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ABSTRACT
On recent GPU architectures, dynamic parallelism, which enables
the launching of kernels from the GPU without CPU involvement,
provides a way to improve the performance of irregular applications
by generating child kernels dynamically to reduce workload imbal-
ance and improve GPU utilization. However, in practice, dynamic
parallelism does not improve performance due to high kernel launch
overhead and low child kernel occupancy. Consequently, most ex-
isting studies focus on mitigating the kernel launch overhead. As
the kernel launch overhead has decreased due to algorithmic re-
designs and hardware architectural innovations, the organization
of subtasks to child kernels becomes a new performance bottleneck.

We present an in-depth characterization of existing software
approaches for dynamic parallelism optimizations on the latest
GPUs. We observe that current approaches of subtask aggregation,
which use the “one-size-fits-all” method by treating all subtasks
equally, can under-utilize resources and degrade overall perfor-
mance, as different subtasks require various configurations for op-
timal performance. To address this problem, we leverage statistical
and machine-learning techniques and propose a performance mod-
eling and task scheduling tool that can (1) analyze the performance
characteristics of subtasks to identify the critical performance fac-
tors, (2) predict the performance of new subtasks, and (3) generate
the optimal aggregation strategy for new subtasks. Experimental
results show that our approach with the optimal subtask aggrega-
tion strategy can achieve up to a 1.8-fold speedup over the existing
task aggregation approach for dynamic parallelism.

CCS CONCEPTS
•Computingmethodologies→Concurrent computingmethod-
ologies; • Software and its engineering → Concurrent pro-
gramming languages;
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1 INTRODUCTION
General-purpose graphics processing units (GPGPUs) are widely
used to accelerate a variety of applications in different domains.
Since GPUs are ideally suited to applications with regular com-
putations and memory access patterns, it is challenging to map
irregular applications (e.g., graph algorithms, sparse linear algebra,
and bioinformatics algorithms) on a GPU. Dynamic parallelism,
supported by both CUDA [5] and OpenCL [2], allows a GPU kernel
to directly launch other GPU kernels from the device and without
involvement of the CPU. This feature can potentially improve the
performance of irregular applications by reducing workload im-
balance between threads, thereby improving both parallelism and
memory utilization [27]. For example, during kernel execution, if
some GPU threads have more work than others, new child kernels
can be spawned to process these subtasks from the overloaded
threads. However, the efficiency of dynamic parallelism is limited
by two issues: (1) high overhead of kernel launching, especially
when a large number of child kernels are needed for subtasks, and
(2) low occupancy, especially when subtasks correspond to tiny
kernels that under-utilize the computational resources of GPUs.

To address these two issues in dynamic parallelism, multiple ap-
proaches [11, 17, 19, 25, 26, 30] have been proposed in hardware and
software. They mainly use the techniques of subtask aggregation,
which consolidates small child kernels into larger kernels, hence
reducing the number of kernels and increasing the GPU occupancy.
However, with the kernel launch overhead continuing to decrease
on the latest GPU architectures, the “one-size-fits-all” approach in
these existing studies, where subtasks are aggregated into a single
kernel, cannot deliver good performance because those subtasks
launched by dynamic parallelism generally require different opti-
mizations and configurations. As a consequence, the organization
of subtasks to child kernels becomes more critical to overall per-
formance, and an adaptive strategy of subtask aggregation that
provides differentiated optimizations for subtasks with different
characteristics may satisfy dynamic parallelism on the latest GPUs.

However, it is non-trivial to determine the optimal aggregation
strategy for subtasks at runtime for different GPU architectures.
To provide a simple system-level solution, we propose a perfor-
mance modeling and task scheduling tool for subtasks in dynamic
parallelism to generate the optimal aggregation strategy. Our tool
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collects the values of a set of GPU performance counters with
sampling data and then leverages a few statistical and machine
learning tools to build the performance model incrementally: (1)
At the performance-analysis phase, we apply statistical analysis
on GPU performance counters to identify the most influential per-
formance factors, which can provide hints of performance-critical
characteristics and performance bottleneck of subtasks. (2) At the
performance-prediction phase, we build an analytical model based
on the most influential performance factors and estimate the per-
formance of new subtasks. (3) At the task-scheduling phase, our
adaptive subtask aggregation strategy optimally groups the sub-
tasks depending on the resource utilization, aggregation overhead,
and kernel launch overhead, and subsequently launches the parent
kernel. Compared to the “1-to-1” launching in default implementa-
tions of dynamic parallelism, where one subtask is scheduled to one
child kernel and the “N-to-1” launching in previous research, where
all subtasks are scheduled to an execution entity (e.g., all subtasks
to a kernel or workgroup or wavefront), our “N-to-M” launching
mechanism provides the most adaptability and fully utilizes GPU
resources. Our paper makes the following contributions:
• An in-depth characterization of existing subtask aggregation
approaches for dynamic parallelism.

• A performance model to identify the most critical performance
factors and characteristics of subtasks that affect the performance
and configurations of subtasks.

• The design of a subtask aggregation model based on the perfor-
mance model.

• Experimental results with irregular applications and datasets on
the latest GPU architectures showing that our optimal subtask
aggregation strategy can achieve up to 1.8-fold speedup over the
existing subtask aggregation approach.

2 BACKGROUND AND MOTIVATION
In this section, we briefly introduce current GPU architectures, GPU
programming models, and dynamic parallelism in GPUs. We then
introduce the statistical and machine-learning (ML) techniques for
performance modeling and prediction.

2.1 GPU Architecture
Here, we take the latest AMD’s GPU architecture codenamed “Vega” [6]
as an example to introduce GPU architectures. Figure 1 illustrates
that the AMD Vega GPU features up to 64 compute units (CUs),
where each CU contains 4 SIMD units, dedicated L1 cache, and local
memory. All these CUs are organized into shader engines (SEs), and
share L2 cache and global memory. During the execution, threads
in a kernel will be distributed across CUs, and threads on each
CU will be divided into 64-thread wavefronts as basic execution
units, and processed by SIMD units concurrently. If threads in a
wavefront take different execution paths, it will cause control flow
divergence and low SIMD utilization. If threads within a wavefront
access non-consecutive memory addresses, non-coalesced memory
accesses occur, resulting in memory divergence, which increases
memory latency.

NVIDIA GPUs [3] have Stream Multiprocessors (SMX) grouped
into Graphics Processing Clusters (GPCs). Each SMX has dedicated
local memory, called shared memory, and L1 cache. L2 cache and
memory controllers are shared across SMXs. Threads on an SMX

will be grouped into 32-thread warps to be executed by SIMD units,
just like wavefronts on AMD GPUs.
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Figure 1: AMD GPU Architecture Codenamed “Vega”

2.2 GPU Programming Models
CUDA and OpenCL. CUDA [5] is a programming model devel-

oped by NVIDIA. In CUDA, a program is implemented by a set of
kernels. In each kernel, threads are organized into thread blocks
and distributed to SMXs. OpenCL [2] is another widely used GPU
programming model, supported by AMD, NVIDIA, and Intel. Simi-
lar to CUDA, threads in a kernel are grouped into workgroups, and
each workgroup will be processed on a compute unit (CU) or SMX.

ROCm. ROCm (Radeon Open Compute platform) [7] is an open-
source platform created by AMD for GPU computing. ROCm sup-
ports multiple programming languages, such as HCC C++, OpenCL
and HIP. The recent ROCm runtime API (version 1.6) allows the
end-users to provision individual CUs for a specific kernel execu-
tion. The API enables us to explore how the pattern of resource
usage and sharing affects the performance of subtasks when we
vary both the number of CUs as well as the scheduling mechanism.

ATMI. TheAsynchronous Task andMemory Interface (ATMI) [4]
is a runtime framework and programming model for heterogeneous
CPU-GPU systems. It provides a uniform API to create task graphs
on both CPUs and GPUs, and enables task launching from both
CPU and GPU with the same application interface. ATMI enables
task configurations to be controlled via simple C-style structures.

2.3 Dynamic Parallelism in GPUs
Dynamic parallelism (DP) is a feature that is supported by both
AMD and NVIDIA GPUs to allow a GPU kernel to launch child
GPU kernels at the device without the involvement of CPU. DP can
be used to improve the performance of irregular applications by al-
leviating the workload imbalance and irregularity. For example, Fig-
ure 2 shows that dynamic parallelism allows an overloaded parent
thread with a number of subtasks larger than THRESHOLD (Line 3)
to offload their subtasks into child kernels (Line 4). Moreover, in
the child kernel, each subtask will be processed in fine-grained
parallelism by multiple threads (Line 8), which can better exploit
GPU computational resources and memory bandwidth.

2.4 Performance Counters (PCs)
Hardware performance counters (PCs) can help us to perform low-
level performance analysis and tuning. In particular, by tracing
these PCs, programmers can identify the correlation between pro-
grams and their performance. Both AMD and NVIDIA provide
profiling tools and APIs to access these performance counters. Ta-
ble 1 shows an example of performance counters on NVIDIA GPUs.

ACM CF 2018



Taming Irregular Applications via Advanced Dynamic Parallelism on GPUs CF ’18, May 8–10, 2018, Ischia, Italy

1 __kernel parent () {

2 load this_subtask from subtasks array

3 if(size of this_subtask >= THRESHOLD)

4 launch child kernel to process this_subtask
5 else
6 process this_subtask }
7
8 __kernel child(this_subtask ) {

9 process this_subtask by all threads}

Figure 2: Example of dynamic parallelism

In this paper, we utilize these performance counters to establish
performance models for performance analysis and prediction.

2.5 Statistical and Machine Learning Models
The performance of applications with irregular kernels are affected
by runtime factors such as the input data itself. In this paper, we
leverage statistical and machine learning models in order to build a
general performance model for complex situations. These models al-
low us to build an accurate model with a small set of measurements,
which can significantly reduce the overhead of measurements. In
this section, we provide the background of the statistical and ma-
chine learning tools that will be used in this paper.

Tree-based Regression Models. Tree-based regression models [13]
provide an alternative to classical linear regression. It builds deci-
sion trees with training datasets and generates the classification or
regression of the individual trees. Random decision forests (Ran-
dom Forest or RF) [9] is a popular regression-tree model that selects
features randomly to avoid the over-fitting issues in decision trees.

Principle Component Analysis (PCA). PCA [13] is a statistical tool
to reduce the number of dimensions by converting a large set of
correlated variables into a small set of uncorrelated variables (i.e.,
principal components), where most of the information still remain
in the large set. PCA is a technique used to identify the important
variables and patterns in a dataset.

Hierarchical Cluster Analysis (HCA). HCA [13] is a statistical
and data-mining tool that builds a hierarchy of clusters for cluster
analysis. It provides a measure of correlation between sets of ob-
servations by using an appropriate metric (e.g., distance matrices)
and a linkage criterion that represents the similarity of sets with
pairwise distances of observations in the sets.

3 PROBLEMS OF DYNAMIC PARALLELISM
In this section, we characterize the performance issues of existing
approaches to dynamic parallelism.

3.1 Experimental Setup
Algorithm Implementations. To identify the performance issues

in dynamic parallelism, we choose three typical irregular applica-
tions, suffering greatly from load imbalance [10], including Sparse-
Matrix Vector Multiplication (SpMV), Single Source Shortest Path
(SSSP), and Graph Coloring (GCLR). For each application, we first
provide the basic dynamic parallelism implementation that spawns
a child kernel per subtask from a thread (Figure 2). And then accord-
ing to the recent publications [25, 29], we build the existing subtask
aggregation approach that consolidates as many as possible sub-
tasks into a GPU kernel to minimize the kernel launch overhead and
improve occupancy. As shown in Figure 3, the parent kernel stores
all subtasks into a global queue (Line 4), and launches a child kernel

for all subtasks, and a subtask is processed by a workgroup for the
AMD GPU (or one thread block for the NVIDIA GPU) (Line 11),
which was reported to be the best configuration for the graph and
sparse linear algebra algorithms.

1 __kernel parent(queue) {

2 load this_subtask from subtasks array

3 if(size of this_subtask >= THRESHOLD){

4 push this_subtask into queue }

5 else{
6 process this_subtask }
7 global synchronization

8 if(globalThreadId == launcher)

9 launch a queue_process kernel to process queue}
10
11 __kernel queue_process(queue) {

12 load this_subtask from queue
13 process this_subtask by a thread block}

Figure 3: Example of existing subtask aggregation mecha-
nism

Dataset. Each application has three datasets from the DIMACS
challenges [1]: coPapers, which has 434,102 nodes and 16,036,720
edges, kron-logn16, which has 65,536 nodes and 4,912,142 edges,
and kron-logn20, which has 1,048,576 nodes and 89,238,804 edges.

Hardware. We evaluate dynamic parallelism on two GPU plat-
forms fromAMD and NVIDIA. The AMD platform uses a Vega GPU,
and the host consists of two Intel Broadwell CPUs (E5-2637v4). The
NVIDIA platform uses a P100 (Pascal) GPU, and the host has two
Intel Broadwell CPUs (E5-2680v4).

Compiler. Each application has OpenCL and CUDA versions
for AMD and NVIDIA platforms, respectively. OpenCL kernels
are compiled and executed with ROCm 1.6 and ATMI v0.3. CUDA
kernels are compiled and executed with CUDA 8.0. CPU-side codes
are compiled with GCC 4.7.8.

Profilers. To get in-depth performance analysis, we use the profil-
ers provided by NVIDIA and AMD to get the performance counters
of GPUs. On the NVIDIA platform, we use nvprof from CUDA 8.0.
On the AMD platform, we use CodeXL of version 2.5.

3.2 Performance Analysis
To identify the performance issues in existing approaches, we per-
form an in-depth performance analysis on our driving applications
without dynamic parallelism, implementations with the dynamic
parallelism, and the dynamic parallelism with existing subtask ag-
gregation.

Figure 4 illustrates huge performance improvements of using
DP with existing subtask aggregation mechanism as well as non-
DP solutions over the naïve dynamic parallelism implementation.
Moreover, with better workload balance and improved memory
access patterns, the existing subtask aggregation can deliver better
performance than the implementation without dynamic parallelism
(except the SSSP algorithm on the AMD platform). Furthermore, we
observe that the speedup of subtask aggregation over the default
DP implementation is higher on the NVIDIA platform than on
the AMD platform, which is possibly due to the higher per-thread
kernel launch overhead on the NVIDIA platform.

Figure 5 shows the normalized execution time of child kernels,
including kernel launch time and kernel compute time. We can find
that with the subtask aggregation mechanism, the kernel launch
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Table 1: Performance counters (NVIDIA Pascal GPU) [8]

Performance Counter Description

warp_execution_efficiency Ratio of the average active threads per warp to the maximum number of threads per warp
inst_replay_overhead Average number of replays for each instruction executed
global_hit_rate Hit rate for global loads
gld/gst_efficiency Ratio of requested global memory load/store throughput to required global memory load throughput
gld/gst_throughput Global memory load/store throughput
gld/gst_requested_throughput Requested global memory load/store throughput
tex_cache_hit_rate Texture cache hit rate
l2_read/write_throughput Memory read/write throughput seen at L2 cache for all write requests
l2_tex_read/write_hit_rate Hit rate at L2 cache for all read/write requests from texture cache.
issue_slot_utilization Percentage of issue slots that issued at least one instruction, averaged across all cycles
ldst_issued/executed Number of issued/executed local, global, shared and texture memory load and store instructions
stall_not_selected Percentage of stalls occurring because warp was not selected
issued/executed_ipc Instructions issued/executed per cycle
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Figure 4: Speedup of the implementations without dynamic
parallelism (Non-DP) and the implementations with exist-
ing subtask aggregation (Ex. Agg.) over the default dynamic
parallelism implementations (Basic DP).

overhead is significantly reduced to be negligible and most of the
execution time is spent on the computation of subtasks, especially
for large datasets (i.e., kron-logn20). Thus, if one wants to improve
the overall performance of dynamic parallelism, improving the
performance of subtasks is more critical than reducing the launch
overhead of child kernels.

Although the subtask aggregation mechanisms can significantly
improve the overall performance of dynamic parallelism, with a
deeper investigation, we find that there is a major drawback in
existing subtask aggregation mechanisms: they treat all subtasks
equally by using the “one-size-fits-all” methodology, aggressively
aggregate as many subtasks as possible into a single kernel (“N-
to-1” approach), and apply the uniform configuration and parallel
strategy for all subtasks. However, we have observed there are
highly diverse characteristics in subtasks. Figure 6(a) shows that in
the SpMV algorithm, the subtask sizes (i.e., corresponding numbers
of GPU threads in subtasks) can range from 1 to over 2K; and the
distribution of subtask sizes highly depends on the input datasets.
We also find although most of the subtasks fall into the range from
1 to 256 in this case, the execution time of large subtasks (i.e., the
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Figure 5: Breakdown of the child kernel execution time in
the existing subtask aggregation mechanism (Ex. Agg.).

subtask size > 2048) can take a considerable portion of the total
execution time, as shown in Figure 6(b).

As a result, we carry out a simple evaluation to investigate if we
can find different performance when we vary the resource usage
(i.e., changing GPU workgroup sizes) for different subtask sizes.
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Figure 6: The distribution of subtask size and execution time
of the SpMV algorithm. The execution time of each subtask
size is normalized to the total execution time.

Figure 7 shows that for the subtasks of size 64, 256, and 1024,
their performances have obviously affected by the workgroup size;
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and the optimal workgroup size is variable with the subtask size and
algorithm. The major reason is that when we change the workgroup
size for a given algorithm, each thread has different workloads
and uses different hardware resources (e.g., GPU registers, local
memory, leading to changes in parallelism, occupancy, and resource
utilization). As a consequence, the “one-size-fits-all” approach in
existing approaches may result in resource underutilization. Amore
intelligent subtask aggregation strategy is needed.
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Figure 7: Performance of SpMV and SSSP algorithms with
different block size. The execution time is normalized to
that of block size = 32.

4 ADAPTIVE SUBTASK AGGREGATION
To obtain the optimal task aggregation strategy for dynamic paral-
lelism, we propose a task aggregation modeling and task scheduling
tool that uses statistical analysis and machine learning techniques
to establish performance models based on a collection of perfor-
mance counters with sampling data.

Figure 8 shows the high-level depiction of our tool, which con-
sists of four phases: 1) performance measurement phase, which
collects performance counter data from all performance counters
via profilers with different input datasets and parameters; 2) perfor-
mance modeling phase, which establishes a performance analysis
model (i.e., determining most important performance counters and
subtask characteristics); 3) performance prediction phase, which uses
the previously identified important performance counters and char-
acteristics to build a performance prediction model; 4) aggregation
generation phase, which generates the optimal subtask aggregation
strategy based on the performance model by considering subtask
performance gain and loss, aggregation overhead, and kernel launch
overhead. Below we will discuss each phase in details.

Irregular 
program

Perf. 
Measure

Perf. 
Modeling

Scheduler

Auto-tuner

Data 
Sample

Perf.
Prediction

New 
subtask

Perf.
Analysis

Aggreg.
Generation

Aggreg.
Strategy

Figure 8: Architecture of our adaptive subtask aggregation

4.1 Performance Measurement
The performance measurement phase collects performance counter
data of the irregular program on the target architecture. Since
the collection of performance counter data can significantly affect
the accuracy of the performance models in the later stages, we

carry out the performance measurement by running the subtasks
with varying parameters, including different datasets, subtask sizes,
and runtime configurations (i.e., workgroup size and the number
of workgroups). During the performance measurement, our tool
collects performance counter data, and measures the execution time
as the response variable. Performance counter data are collected
from all performance counters using corresponding performance
profilers - CodeXL and nvprof for AMD and NVIDIA platforms,
respectively.

The size and selection of sample data are critical for the accu-
racy of the performance model. Though more sample data can
improve the accuracy of the performance model, over-saturated
sample data will significantly increase the data collection time and
performance modeling overhead. Moreover, to avoid selection bias,
which makes the model is non-representative for new subtasks
with unseen characteristics, the data selection should have proper
randomization. According to experiments on our implementations,
200 samples with randomly selected different input parameters and
configurations are sufficient to build accurate performance models
for predicting the optimal aggregation strategy. As a configurable
parameter, the number of samples can also be set by users.

4.2 Performance Modeling
In the performance modeling phase to identify the most important
performance factors, we utilize statistical and machine learning
tools, including Principal Components Analysis (PCA), Random
Forest Regression (RF) and Hierarchical Cluster Analysis (HCA).

4.2.1 Principal Components Analysis (PCA). We first perform
PCA analysis on performance counter data, which can help us to
identify important performance counters that contribute most to
the variance, and also can help us to determine the correlation
between these performance counters. Based the importance and
correlation, we can reduce the number of performance counters for
the later performance modeling to reduce the risk of over-fitting.
In this paper, we identify first few important performance counters
(< 10) from the top principal components as important variables.

4.2.2 Random Forest Regression. After PCA analysis, we apply
the Random Forest (RF) model on the performance counter data, and
obtain the relative variable importance of RF, which can reveal the
influence of a variable to the response variable (i.e., execution time).
Through identifying the most important variables (i.e., performance
counters), we can determine the performance counters that are
strongly correlated to the execution time, which give us hints of
the characteristics and performance bottlenecks of subtasks.

4.2.3 Hierarchical Cluster Analysis (HCA). After the Random
Forest, we use Hierarchical Clustering Analysis (HCA) to help us get
insights of the important performance counters determined by the
Random Forest, which can give us hints about the characteristics
and performance bottlenecks of subtasks.

4.2.4 Result Analysis. In this section, we offer examples of per-
formance analysis results of performance modeling phase.

SpMV. Figure 9 shows the result of performance modeling of the
SpMV algorithm. Based on the PCA results (Figure 9(a)), we can
identify the most variable performance counters from the top four
principle components - PC1, PC2, PC3 and PC4, which account for
most of the variance in the performance counter data. Themost vari-
able performance counters are global_hit_rate, tex_cache_hit_rate,
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gld_throughput, achieved_occupancy, ldst_issued, and ldst_executed.
After identifying the most variable performance counters, the Ran-
dom Forest will be applied to the performance counter data with
execution time as response variable to determine the most impor-
tant performance counters relevant to performance. Figure 9(b)
shows the inst_issued and inst_replay_overhead are the two most
important performance counters for the SpMV algorithm. Then,
we can turn to HCA to get more insights. We can observe that the
most relevant performance counter (i.e., inst_issued) has strong cor-
relation to inst_issued and ldst_executed. And the second important
performance counter -inst_replay_overhead has strong correlation
to global_hit_rate, tex_cache_hit_rate and l2_tex_write_hit_rate. It
indicates that data locality and the amount of workload have sig-
nificant impacts on the performance of SpMV.

SSSP. From the results for SSSP (Figure 10(a)), we can observe
that the SSSP algorithm has highly similar PCA results as the SpMV
algorithm. However, Figure 10(b) shows the most important vari-
able for the time prediction is dram_write_throughput. From Fig-
ure 10(c), we observe that dram_write_throughput is strongly con-
nected to inst_replay_overhead, gst_efficiency, l2_tex_write_hit_rate
and gst_throughput. It can give us a hint that the performance of
SSSP is highly relevant to the memory write performance.

Graph Coloring. Figure 11 shows the performance modeling re-
sult of the Graph Coloring algorithm. Similar with the SSSP algo-
rithm, dram_write_throughput is the most important performance
counters for performance prediction. Based on the result of HCA
(Figure 11(c)), there are high correlation among dram_write_throughput,
l2_tex_read_hit_rate, gld_efficiency, and dram_read_throughput, which
indicate that the performance of graph coloring is highly relevant
to the memory read performance.

4.3 Performance Prediction
Based on the performance modeling phase, we can establish a
prediction model to estimate the performance of new subtasks.

4.3.1 Prediction Model with Random Forest. Our general idea
for the performance prediction is (1) building dedicated prediction
models for each top important performance counters (≤ 5) based on
workgroups size, subtask size, and the number of subtasks; (2) using
the top important performance counters to retrain the prediction
model for the execution time; (3) and merging the two sets of pre-
dict models to predict the execution time for new subtasks with the
given subtask size and the number of tasks. With this performance
prediction model, we can predict the optimal workgroup size for
new subtasks. Then, we can perform the initial subtask aggregation
that groups subtasks with the same workgroup size together and
set the optimal workgroup size for each group. However, to achieve
the optimal overall performance, we need a more sophisticated sub-
task aggregation strategy, which will be discussed in the following
Section 4.4.

4.3.2 Result Analysis. Figure 12 shows an example of perfor-
mance prediction model for SpMV subtasks with task size = 128,
the number of tasks = 64, and varied workgroup size. To verify the
accuracy of our model, we randomly select 80% of data as training
data and use the rest 20% of data as evaluation data. As Figure 12(a)
shows, we first predict the top five important performance counters.
Then, as Figure 12(b) illustrates, we use the predicted value of the

top five performance counters to estimate the performance of the
given SpMV subtasks with varying workgroup size.

Figure 13 shows the prediction results of SSSP and GCLR algo-
rithms. In general, we get produce highly accurate performance
prediction for all algorithms, which can determine the optimal block
size for given tasks size and number of tasks. In this example, the
optimal block size for the SpMV algorithm is 128 (Figure 12(b)),
while the optimal block size for SSSP and GCLR algorithms is 256
(Figure 13).

4.4 Aggregation Generation
With the performance prediction model, we can easily determine
the optimal configurations (i.e., block size) for new subtasks by
searching the configuration space. However, generating the optimal
aggregation strategy is non-trivial and has the following challenges.

First, despite that kernel launch time has been continually re-
duced in the latest GPU micro-architecture and runtime, the ker-
nel launch is not free. Second, the aggregation will reduce kernel
launch overhead, but aggregating subtasks with different config-
urations will result in performance loss by applying non-optimal
configuration on subtasks. Third, subtask aggregation also intro-
duces aggregation overhead (e.g., migrating subtasks into the same
subtask group). Therefore, we need to balance the kernel launch
overhead, aggregation overhead, and subtask performance.

To achieve the optimal overall performance, we build a model
that firstly identifies the optimal performance for each subtask
(Equation 1), and then searches the subtasks, which require the
identical or similar configuration (i.e., block size), into a kernel, and
uses a subtask aggregation model to estimate the optimal perfor-
mance after merging subtasks, and then determines if we need to
merge the two subtask groups. We estimate the optimal task time
by applying the configuration across each other subtask to choose
the optimal one (Equation 2) for both, and then determine merge
or not by considering the kernel launch overhead and aggregation
overhead (Equation 3). Note that the existing aggregation method
only considers reducing kernel launch overhead rather than the
performance loss of applying the non-optimal configuration.

confA, timeA = conf iд_search(taskA)
confB , timeB = conf iд_search(taskB )

(1)

timechild =min

{
predict(confA, tB ) + timeA
predict(confB , tA) + timeB

(2)

timeoverall =min

{
timeA + timeB
timechild − timekl + timeaдд

(3)

5 PERFORMANCE EVALUATION
Here, we evaluate the effectiveness of our optimal aggregation
model on AMD and NVIDIA platforms, and compare it with the
performance of existing aggregation techniques. The existing sub-
task aggregation (Ex. Agg.) aggressively consolidates as many pos-
sible subtasks into a single kernel. On the other hand, our optimal
subtask aggregation (Opt. Agg.) technique strategically aggregates
subtasks based on our subtask aggregation model.

As the performance measurement, performance modeling and
performance prediction phases are offline, they just need to run
once offline with sampling data for an application. Therefore, in the
evaluation, we do not include the execution time of these phases,
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(b) Variable importance
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(c) Clustering

Figure 9: The result of the performance modeling of the SpMV algorithm.
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(c) Clustering

Figure 10: The result of the performance modeling of the SSSP algorithm.
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(c) Clustering

Figure 11: The result of the performance modeling of the Graph Coloring (GCLR) algorithm.

only include the execution time of the aggregation generation phase,
which needs to be performed at runtime.

5.1 Performance Comparison
Figure 14 shows the performance comparison between the existing
aggregation and optimal subtask aggregation. The optimal aggrega-
tion strategy can achieve up to a 1.8-fold speedup over the existing
aggregation on the NVIDIA platform, and a 1.5-fold speedup on the
AMD platform. For dataset kron-logn20, which has higher subtask
size diversity, we can achieve higher performance improvement.

5.2 Performance Profiling
With in-depth profiling, as Figure 15 shown, the implementation
with the optimal aggregation improves warp_execution_efficiency
and global_hit_rate, which indicate better load balance, and less
irregular memory accesses, respectively. Furthermore, we observe
the noticeable improvement in achieved_occupancy, which indicates
improved resource utilization that is crucial for the performance of
dynamic parallelism.
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Figure 12: The result of the performance prediction of the
SpMV algorithm with kron-logn16 dataset, task size = 128
and number of tasks = 64 (normalized to minimal time)
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Figure 13: The result of the performance prediction of SSSP
and GCLR algorithms kron-logn16 dataset, task size = 128
and number of tasks = 64 (normalized to minimal time)
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(b) NVIDIA platform

Figure 14: Speedup of the optimal subtask aggregation over
the existing subtask aggregation (Ex. Agg.)

6 RELATEDWORK
Currently, many applications in well-established and emerging
fields (e.g., graph algorithms [24, 31], sparse linear algebra [33,
34], security analysis, and bioinformatics algorithms [32, 35, 36])
exhibit increasing irregularities in memory access, control flow,
and communication and I/O patterns. It is very challenging to map
these irregular applications on a GPU.

Dynamic Parallelism. Prior work on dynamic parallelism for
GPUs mainly focuses on kernel launch overhead. Wang et al. [27]
characterize the benefits and overheads of dynamic parallelism for
irregular applications. They then propose dynamic thread block
launch (DTBL) [25], a hardware-based subtask aggregation that

0
1
2
3
4
5
6

Sp
M

V_
co

Pa
pe

rs

Sp
M

V_
kr

on
-lo

gn
16

Sp
M

V_
kr

on
-lo

gn
20

SS
SP

_c
oP

ap
er

s

SS
SP

_k
ro

n-
lo

gn
16

SS
SP

_k
ro

n-
lo

gn
20

GC
LR

_c
op

Pa
pe

rs

GC
LR

_k
ro

n-
lo

gn
16

GC
LR

_k
ro

n-
lo

gn
20

w
ar

p 
ex

ec
. e

ff
ic

ie
nc

y 
(n

or
m

.)

(a) Warp execution efficiency

0

0.5

1

1.5

2

2.5

Sp
M

V_
co

Pa
pe

rs
Sp

M
V_

kr
on

-lo
gn

16
Sp

M
V_

kr
on

-lo
gn

20
SS

SP
_c

oP
ap

er
s

SS
SP

_k
ro

n-
lo

gn
16

SS
SP

_k
ro

n-
lo

gn
20

GC
LR

_c
op

Pa
pe

rs
GC

LR
_k

ro
n-

lo
gn

16
GC

LR
_k

ro
n-

lo
gn

20gl
ob

al
 h

it 
ra

te
 (n

or
m

.)

(b) Global hit rate

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Sp
M

V_
co

Pa
pe

rs
Sp

M
V_

kr
on

-lo
gn

16
Sp

M
V_

kr
on

-lo
gn

20
SS

SP
_c

oP
ap

er
s

SS
SP

_k
ro

n-
lo

gn
16

SS
SP

_k
ro

n-
lo

gn
20

GC
LR

_c
op

Pa
pe

rs
GC

LR
_k

ro
n-

lo
gn

16
GC

LR
_k

ro
n-

lo
gn

20gl
d 

ef
fic

ie
nc

y 
(n

or
m

.)
(c) Global load efficiency

0
0.5

1
1.5

2
2.5

3
3.5

4

Sp
M

V_
co

Pa
pe

rs
Sp

M
V_

kr
on

-lo
gn

16
Sp

M
V_

kr
on

-lo
gn

20
SS

SP
_c

oP
ap

er
s

SS
SP

_k
ro

n-
lo

gn
16

SS
SP

_k
ro

n-
lo

gn
20

GC
LR

_c
op

Pa
pe

rs
GC

LR
_k

ro
n-

lo
gn

16
GC

LR
_k

ro
n-

lo
gn

20

ac
hi

ev
ed

 o
cc

up
an

cy
 (n

or
m

.)

(d) Achieved occupancy

Figure 15: Normalized profilingnumbers of optimal aggrega-
tion (Opt. Agg.) over existing aggregation (Ex. Agg.) on the
NVIDIA platform

buffers subtasks in aggregation tables. To further improve the effi-
ciency of dynamic parallelism, this work is enhanced by a locality-
aware scheduler [26]. Orr et al. [19] also provide a subtask ag-
gregation scheme in hardware for fine-grained tasks. All these
hardware-based approaches require hardware modification, while
our software-based approach improves the efficiency of dynamic
parallelism on current GPU architectures.

Besides hardware-based subtask aggregation, multiple compiler-
based approaches use subtask aggregation to reduce the number
of kernel launches. Yang et al. propose CUDA-NP [30], a compiler
approach for exploring nested parallelism via using slave threads
in a thread block to process subtasks. Chen et al. [11] propose “Free
Launch” which reuses the parent threads to process child tasks.
Wang et al. [23] present kernel fusion to achieve high utilization.
Wu et al. [29] propose a subtask aggregation of child kernels at
three different granularities — warp, block, and kernel. Similarly,
Hajj [12] aggregates kernels at the same three granularities and
overlaps child kernel execution with parent kernel via dispatch-
ing child kernel prior to child tasks ready. Paravecino proposes
a framework to exploit the nest parallelism and concurrent ker-
nel execution via launching child kernels [20]. However, all these
software approaches focus on reducing kernel launch overhead
regardless of child kernel performance.

Performance Modeling on GPUs. Many approaches to GPU per-
formance modeling utilize machine learning [14–16, 18, 21, 22, 28,
37, 38].Zhang et al. [37] propose a statistical approach to identify
the relationship between characteristics of a kernel on a GPU and
its performance and power consumption. Souley et al. [18] propose
a statistical model based on Random Forest (RF) to characterize and
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predict the performance of GPU kernels. Rogers et al. [21] charac-
terize the effect of the warp-size on NVIDIA GPUs. Yao et al. [38]
characterize some performance factors for NVIDIA GPUs including
work-group sizes. Stargazer [15] is an automated GPU performance
framework based on stepwise regression modeling. Eiger [16] is an
automated statistical methodology for modeling program behavior
on different architectures. Though considerable attention has been
focused on performance models to provide performance analysis
and prediction on GPU architectures, none of them address the
subtasks of dynamic parallelism in GPUs, which are tiny, irregular,
and many in numbers.

7 CONCLUSION
While dynamic parallelism can potentially improve the performance
of irregular applications, existing approaches deliver sub-optimal
performance due to high kernel launch overhead and low subtask
occupancy. Our in-depth performance characterization of existing
approaches, which treats all subtasks equally and use uniform con-
figurations, shows that GPU under-utilization can occur due to
variable characteristics between subtasks. To overcome these chal-
lenges, we propose a subtask aggregation and scheduling tool that
1) establishes a set of performance models for performance analysis
and prediction of subtasks based on statistical andmachine-learning
techniques and 2) generates the optimal subtask aggregation strat-
egy by considering the subtask performance, kernel launch, and
aggregation overhead. Experimental results show that the optimal
subtask aggregation strategy generated by our tool can achieve up
to a 1.8-fold speedup over the existing subtask aggregation.
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