

Demystifying Automata Processing: GPUs, FPGAs or Micron’s AP?
Marziyeh Nourian1,3, Xiang Wang1, Xiaodong Yu2, Wu-chun Feng2, Michela Becchi1,3

1,3Department of Electrical and Computer Engineering, 2Department of Computer Science
1University of Missouri, 2Virginia Tech, 3North Carolina State University

mnouria@ncsu.edu, xw7b4@mail.missouri.edu, xdyu@vt.edu, feng@cs.vt.edu, mbecchi@ncsu.edu

ABSTRACT
Many established and emerging applications perform at their
core some form of pattern matching, a computation that maps
naturally onto finite automata abstractions. As a consequence, in
recent years there has been a substantial amount of work on
high-speed automata processing, which has led to a number of
implementations targeting a variety of parallel platforms: CPUs,
GPUs, FPGAs, ASICs, and Network Processors. More recently,
Micron has announced its Automata Processor (AP), a DRAM-
based accelerator of non-deterministic finite automata (NFA).
Despite the abundance of work in this domain, the advantages
and disadvantages of different automata processing accelerators
and the innovation space in this area are still unclear.

In this work we target this problem and propose a toolchain
to allow an apples-to-apples comparison of NFA acceleration
engines on three platforms: GPUs, FPGAs and Micron’s AP. We
discuss the automata optimizations that are applicable to these
three platforms. We perform an evaluation on large-scale
datasets: to this end, we propose an NFA partitioning algorithm
that minimizes the number of state replications required to
maintain functional equivalence with an unpartitioned NFA, and
we evaluate the scalability of each implementation to both large
NFAs and large numbers of input streams. Our experimental
evaluation covers resource utilization, traversal throughput, and
preprocessing overhead and shows that the FPGA provides the
best traversal throughputs (on the order of Gbps) at the cost of
significant preprocessing times (on the order of hours); GPUs
deliver modest traversal throughputs (on the order of Mbps), but
offer low preprocessing times (on the order of seconds or
minutes) and good pattern densities (they can accommodate
large datasets on a single device); Micron’s AP delivers
throughputs, pattern densities, and preprocessing times that are
intermediate between those of FPGAs and GPUs, and it is most
suited for applications that use datasets consisting of many small
NFAs with a topology that is fixed and known a priori.

1 INTRODUCTION
Many established and emerging applications perform at their

core some form of pattern matching, a computation that maps

naturally onto finite automata abstractions. In biology, for
example, several genomics tasks, such as motif discovery,
orthology inference, shotgun and de novo assembly, involve
string-matching operations on genomics data. In turn, advances
in DNA sequencing technology have led to increasingly large
volumes of data available for these applications, resulting in a
significant increase in their computational requirements. In the
networking domain, several applications such as network
intrusion detection, content-based routing, and application-level
filtering require inspecting network packets for potentially large
sets of predefined patterns, and they typically must perform this
operation at the rate of packet arrival on the router interface.

Given the number and relevance of applications requiring
efficient pattern matching, there has been a substantial amount
of work on high-speed automata processing, and this work has
originated from different communities: from the networking to
the reconfigurable computing and computer architecture to the
parallel computing community. These efforts have led to a
number of algorithmic [1-9] and architectural solutions targeting
different parallel platforms: from CPUs to GPUs [10-12] to
FPGAs [13-16] to ASICs [17-19] to Network Processors [20].
More recently, Micron has announced their Automata Processor
[21], a DRAM-based accelerator of non-deterministic finite
automata (NFA) that has been showcased on a variety of
applications: motif discovery in biological sequences [22],
association rule mining [23], brill tagging [24], high-speed
regular expression matching for network intrusion detection
[25], graph processing [26], and sequential pattern mining [27].

Despite this abundance of work on high-speed automata
processing, there is still lack of clarity as to how existing
software and hardware solutions are related to and compare
with each other. There are several reasons for this.

First, existing solutions are based on different automata
models: either non-deterministic or deterministic finite automata
(NFAs and DFAs, respectively). While functionally equivalent,
NFAs and DFAs have practical differences – in terms of resource
requirements and traversal behavior – that are strongly
dependent on the characteristics of the underlying pattern set.
While there has been a substantial body of work proposing
automata designs that trade off the advantages and
disadvantages of NFAs and DFAs [1-9], no automata model is
preferable on all datasets. This makes it hard to provide a fair
comparison between automata processors relying on different
automata models.

Second, some automata processing architectures are designed
to optimize the peak performance of a single input stream, while
others offer better support for stream-level concurrency.

Third, applications relying on finite automata must operate

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICS '17, June 14-16, 2017, Chicago, IL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5020-4/17/06…$15.00
http://dx.doi.org/10.1145/3079079.3079100

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

in two steps: in the preprocessing step, the required automaton
must be generated, optimized, compiled, and loaded onto the
target accelerator (through memory configuration and/or
place&route operations); in the traversal step, the application
performs pattern matching by traversing the automaton guided
by the content of the input text. Most of the existing automata
processing engines have been designed to optimize automata
traversal, often at the cost of a significant preprocessing cost.
While the preprocessing time is unimportant for some categories
of applications (for example, network intrusion detection
systems can operate for days or weeks between reconfigurations
of their pattern sets), its effect on performance can be significant
for other applications with more dynamic pattern sets or
traversal times in the order of a few seconds. Unfortunately, the
majority of the previous studies on Micron’s AP neglect to
report the preprocessing overhead (or part of it) [21-24] or
report substantial speedups over preexisting CPU tools (not
necessarily based on automata) by comparing the full execution
time of these tools to only the traversal time of the automata-
based solution (on the order of seconds or milliseconds),
omitting the preprocessing time of the AP-design (on the order
of minutes) in the speedup calculation [25]. This can lead to
results that are misleading or of limited practical use.

 To target these problems and provide an apples-to-apples
comparison, we select automata accelerator designs that rely on
the same automata model: NFAs. Since NFAs do not suffer from
state explosion, their use allows us to perform an evaluation on
large-scale datasets without posing any restrictions on the kind
of patterns supported. Specifically, we compare GPU- and FPGA-
based NFA engines with Micron’s AP. Micron’s AP extends
NFAs’ functionality with counters and boolean elements. To
ensure functional equivalence and the same degree of
programmability across the considered platforms, we extend
existing FPGA- and GPU-based designs to support these features,
and we adopt the same programming interface for all platforms:
namely, Micron’s Automata Network Markup Language
(ANML). Different platforms offer different automata density –
to take this into account, we perform an analysis on non-trivial
dataset sizes, which require partitioning large NFAs across
multiple devices. Besides considering peak performance on a
single input stream, we evaluate the scalability of the considered
automata processor designs to multiple concurrent inputs.
Finally, we evaluate the costs of the different preprocessing steps
required by the considered architectures, and we study how the
size of the automaton and the density of its transitions affect
some of the preprocessing stages (e.g., place&route on Micron’s

AP and FPGA).
To summarize, we make the following contributions:

• We extend existing FPGA- and GPU-based automata
processing designs to support Micron’s AP counters and
boolean elements, and we propose a compiler toolchain to
automatically deploy extended NFAs (in ANML form) onto
these three platforms.

• We propose an NFA partitioning scheme aimed at
minimizing the amount of state replication required to
handle large NFAs while preserving functional equivalence
with a single unpartitioned NFA.

• For GPU deployment, we explore different state layouts and
kernels suited to NFAs with varying characteristics.

• We perform an apples-to-apples comparison between
Micron’s AP, GPU- and FPGA-based NFA accelerator
designs on large-scale datasets. Our evaluation covers
resource utilization, throughput and preprocessing costs for
real-world NFAs used in networking and bioinformatics
applications, as well as synthetic datasets covering regular
expressions datasets with various characteristics.

2 BACKGROUND AND RELATED WORK

2.1 Background on Automata Processing
Regular expression matching has traditionally been

implemented by representing the pattern-set through finite
automata (FA) [28]. The matching operation is equivalent to a
FA traversal guided by the content of the input stream. Worst-
case performance guarantees can be offered by bounding the
amount of processing performed per input character. However,
techniques to keep per-character processing low involve
increasing the size of the finite automaton, the basic data
structure in the regular expression matching engine. As the size
of pattern-sets and the expressiveness of individual patterns
increase, limiting the size of the automaton to fit on reasonably
provisioned hardware platforms becomes challenging. Thus, the
exploration space is characterized by a trade-off between the size
of the automaton and the worst-case bound on the amount of
per character processing.

NFAs and DFAs are at the two extremes in this exploration
space. NFAs have a limited size but can require expensive per-
character processing, whereas DFAs offer limited per-character
processing at the cost of a possibly large automaton. In Figure 1
we show the NFA and DFA accepting three simple patterns
(a+bc, bcd+ and cde). In the figure, states active after processing
text aabc are colored gray. In the NFA, the number of states and
transitions is limited by the number of symbols in the pattern-
set. In the DFA, every state presents one transition for each
character in the alphabet (∑). Each DFA state corresponds to a
set of NFA states that can be simultaneously active [28];
therefore, the number of states in a DFA equivalent to an N-state
NFA can potentially be 2N. In practice, previous work [2, 5, 29]
has shown that this so-called “state explosion” happens only in
the presence of complex patterns (typically those containing
repetitions of large character sets). Since each DFA state
corresponds to a set of simultaneously active NFA states, DFAs

a

0

1

4

7

2

5

8

3

6

9

a
b c

b c d
d

c

d e

∑

(a)

c: from 1,3,5-10

0

1

4

8

2

5

9

3

6

10

a
b c

b c d

c
d e

7

d

e

d

d
remaining
transitions b: from 2-10

a: from 1-10
(b)

Figure 1: (a) NFA and (b) DFA accepting regular expressions
a+bc, bcd+ and cde. Accepting states are bold. States active
after processing text aabc are colored gray.

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

ensure minimal per-character processing (only one state
transition is taken for each input character).

From an implementation perspective, existing regular
expression matching engines can be classified into two
categories: memory-based [1-12, 17, 19], and logic-based [13-16].
Within the former, the FA is stored in memory; within the latter,
it is stored in combinational and sequential logic. Memory-based
implementations can be deployed on various platforms (GPUs,
network processors, ASICs, FPGAs); logic-based
implementations typically target FPGAs. In a memory-based
implementation, design goals are the minimization of the
memory size needed to store the automaton and of the memory
bandwidth needed to operate it. Similarly, in a logic-based
implementation the design aims at minimizing the logic
utilization while allowing fast operation (that is, a high clock
frequency). Existing proposals targeting DFA-based, memory-
centric solutions have focused on designing compression
mechanisms to reduce the DFA memory footprint and novel
automata to alleviate the state explosion problem [1-9]. Despite
the complexity of their design, memory-centric solutions have
three advantages: fast reconfigurability, low power consumption,
and scalability in the number of input streams. On the other
hand, logic-centric solutions allow for easily achieving peak
worst-case performance on a single input stream, at the expense
of lack of scalability in the number of concurrent inputs.

2.2 Micron’s Automata Processor Overview
Micron's Automata Processor [21] is a DRAM-based,

reconfigurable accelerator that simulates NFA traversal at high
speed. The AP includes three kinds of programmable elements
stored in SDRAM: State Transition Elements (STE), Counter
Elements (CE) and Boolean Elements (BE), which implement
states/transitions, counters and logical operators between states,
respectively. Each STE includes a 256-bit mask (one bit per
ASCII symbol), and symbols triggering state transitions are
associated to states (and encoded into STEs) rather than to
transitions. Transitions between states are then implemented
through a routing matrix consisting of programmable switches,
buffers, routing lines, and cross-point connections. The routing
capacity is limited by tradeoffs between clock rate, propagation
delays and power consumption, and these constraints influence
place&route of automata onto the AP hardware. Micron's
current generation of AP board (AP-D480) includes 16 or 32
chips organized into two to four ranks (8 chips per rank), and its
design can scale up to 48 chips. Each AP chip consists of two
half-cores. There are no routes either between half-cores or

inter-chips, which implies that NFA transitions across half-cores
and chips are not possible. Programmable elements are
organized in blocks: each block consists of 16 rows, where a row
includes eight groups of two STEs and one special purpose
element (CE or BE). Each chip contains a total of 49,152 STEs,
768 CE and 2,304 BE, organized in 192 blocks and equally
residing in both half-cores. Current boards allow up to 6,144
elements per chip to be set as report elements.

AP automata can be described in ANML (an XML-based
language). Recently proposed high-level programming languages
for the AP are mapped and compiled into ANML [30]. Micron’s
SDK includes a toolchain that parses ANML designs, compiles
them into internal objects consisting of subgraphs, places and
routes these subgraphs onto the AP hardware, and finally
generates a binary image that can be used to program the AP
memory and routing matrix. Once the AP has been programmed,
it will be able to simulate the NFA traversal. AP chips can be
grouped into logical cores of 2, 4 or 8, each processing a stream
of 8-bit input characters [25]. The AP nominally operates at a
133MHz frequency, and, in absence of matches, it processes one
input character per clock cycle from all input streams. Once
matches occur, AP generates reporting events in vector format
and stores them in an output-buffer; reporting matches to the
host system requires from 91 to 291 clock cycles.

3 TOOLCHAIN

3.1 Overall design
Figure 2 shows the toolchain designed to deploy ANML

specifications on GPU, FPGA and Micron’s AP. In the figure,
grey boxes represent the software components that we have
designed and implemented. The last two modules leading to
FPGA and AP are Xilinx and Micron’s software development kits
used for the final synthesis/compilation, map, and place&route
on these two devices.

The input to the toolchain is an ANML file that contains one
or more automata networks (each including one or more NFAs).
We don’t impose any constraints on these networks: in other
words, they don’t need to be designed to fit a particular device or
optimized for it. Once parsed, these networks are stored in our
toolchain using an internal representation for later processing
and optimization. We distinguish two categories of
optimizations: automata-specific and platform-specific. Since the
GPU, FPGA and AP are used as NFA traversal accelerators,
optimizations to the automaton apply to all platforms. In our
previous work [14], we have described several NFA
optimizations (state reduction, alphabet compression and software
striding) and put them to practice on FPGA; these optimizations
apply to GPUs and AP as well. Automata-specific optimizations
can be selectively enabled and disabled. Platform-specific
optimizations are related to the way the NFA is encoded for the
particular target device; these optimizations include compact and
efficient memory encodings, logic utilizations, and striding
mechanisms that are specific to a particular hardware platform.
Since the internals of the operation of the AP hardware and its
software stack (including the compilation, map and place&route
processes) are proprietary, AP-specific optimizations are

Figure 2: Our toolchain

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

deferred to the AP SDK tools (last phase of the toolchain). The
partitioning step, that takes a potentially large network and
breaks it into multiple NFA partitions so that each of them can
fit the target hardware, is performed after the automata-specific
optimization step. This allows partitioning to be done on an
already optimized NFA. Our partitioning algorithm is platform-
independent, but its configuration depends on the target
platform. The code and configuration generation step produces the
files required for the final deployment of the automata network
on the hardware. For GPUs, all is needed is a configuration file
that includes the information necessary to load the NFA
partitions into memory, and a header file with the definition of
the boolean connectors in the ANML specification. FPGAs are
configured through a Verilog file describing the NFA network
and its interface. The AP is configured through an ANML file;
this output file differs from the input file in that it contains a
partitioned and optimized automata network.

3.2 GPU implementation
We reuse and extend iNFAnt [18], an NFA-traversal engine

for GPUs. iNFAnt stores the NFA in device memory, and encodes
the transition table as set of (source, destination) pairs indexed
by the input character. In order to allow efficient execution,
iNFAnt stores the set of active states in shared memory in bit-
vector form. For each input character, iNFAnt retrieves from
memory all the transitions on that symbol, and, if their source
state is active, the engine updates the active state vector with the
destination state information. In iNFAnt, each thread-block is
assigned an input stream, and threads within a block process the
state transitions and update the state vector cooperatively.

We extended iNFAnt with the following functionalities:
Support for multiple NFA partitions – We map each NFA

partition to a thread-block, allowing multiple blocks to process
the same input stream on different partitions. The transition lists
corresponding to different partitions are laid out sequentially,
and an indexing array maps each partition to the proper set of
thread-blocks, each operating on a different input stream.

Traversal kernels based on compressed sparse row (CSR) layout
– We consider an alternative memory layout where transitions
represented as (input symbol, destination) pairs are indexed by
the source state. For each input symbol, this layout allows
processing only the transitions that originate from active states.
We store the identifiers of the active states in a queue in global
memory. We consider two variants of this kernel: CSR-state and
CSR-tx, the former mapping active states to threads, and the
latter mapping outgoing transitions from active states to threads.

Support for counters and boolean elements – We associate a

special state to each counter and boolean element, and store
these special states at the end of the state vector. The activation
of special states triggers code implementing the operation of the
particular counter or boolean element. Boolean operators are
also associated combinational code that is stored in an
automatically generated header file.

3.3 FPGA implementation
On FPGA, NFA processing can be realized in two ways: either

by implementing a traversal engine that accesses the NFA stored
in memory, or by directly encoding the NFA in logic. Most logic-
based NFA implementations are based on the one-hot encoding
scheme [13], in which states are represented as flip-flops while
transitions are implemented by and-ing and or-ing the outputs
of the flip-flops with the decoded input character. For example,
Figure 3 shows the one-hot encoding representation of the NFA
accepting regular expression ab+[cd]e. The main advantage of
this scheme is that it limits the traversal time to one clock cycle
per input character independent of the number of states that are
active (this property is shared by Micron’s AP). On the other
hand, this implementation suffers from two limitations: first,
updating the NFA requires reprogramming the device; second,
multiple input stream support requires logic replication. The
pros and cons of a memory-based FPGA design are comparable
to those of a GPU solution: easy support for multiple input
streams at the cost of irregular and unpredictable memory access
patterns, leading to dataset dependent performance. In this paper
we use the optimized logic-based implementation that we have
described in our previous work [14], and extend it to support
counters and boolean elements (a trivial extension).

3.4 Automata-specific optimizations
Our toolchain includes three automata-specific optimizations:

state reduction, alphabet compression and software striding [14].
Here, we briefly mention their effect on the considered
platforms.

State reduction (which merges duplicate NFA paths) reduces
the memory requirements on GPU and AP, and the logic
requirements on FPGA. In addition, it reduces the number of
states that can be active in parallel, which for GPU is beneficial
to the throughput.

Alphabet compression (which consolidates the alphabet based
on the symbols appearing on the NFA transitions) reduces the
wiring and LUT utilization on FPGA. However, because the AP
stores a 256-bit mask in each STE, this optimization does not
benefit AP unless combined with software striding.

Software striding (which allows processing multiple
characters in one step) can be beneficial on all platforms if
combined with alphabet reduction. This technique is applicable
to the AP only if the alphabet generated by combining alphabet
reduction and software striding does not exceed 256 symbols.
GPUs and FPGAs offer also platform-specific striding schemes
[6, 10, 15], which we have included in our toolchain.

3.5 Partitioning criteria
An NFA must be partitioned if it exceeds the resources

Figure 3: NFA accepting regular expressions ab+[cd]e and
corresponding one-hot encoding representation

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

available on a particular device. Here, we indicate the platform-
specific partitioning criteria we use. In Section 4, we describe
our proposed partitioning algorithm.

GPU: GPU partitioning is required if the shared or global
memory capacity is exceeded, or if the state identifier space is
exhausted. In this paper, we use 16-bit state identifiers, leading
to a maximum of 65536 states per NFA partition. This constraint
is more restrictive than those on the global and shared memory
capacity (and, due to thread-block concurrency, is not a limiting
factor on performance – see Section 5).

FPGA: The logic design used stores states in flip-flops and
transitions in LUTs. We experimentally found flip-flops to be the
bottleneck resource. Thus, we perform NFA partitioning when
the number of NFA states exceeds that of available flip-flops.

AP – The AP does not allow transitions across half-cores, and
has a limited number of STEs, Counter Elements and Boolean
Elements per half-core (see Section 2.2). Thus, the AP NFA
partitioning criterion is based on these constraints.

4 NFA PARTITIONING ALGORITHM
In this section, we describe our NFA partitioning algorithm.

For the sake of simplicity, we discuss the algorithm on
traditional NFAs: its extension to counters and boolean elements
is straightforward. In order to preserve functional equivalence,
NFA partitioning requires state replication. For example, let us
assume to break the NFA of Figure 4(a) into two partitions to be
deployed and operated on two devices: one partition containing
states from 0 to 16, and the other containing states from 17 to 24.
In order to maintain functional equivalence with the original
NFA, the entry state 0, which is shared by the patterns matched
in the both partitions, must be replicated into the second
partition. In general, very large NFAs may require replication of

sets of states shared by several
patterns.

The goal of our
partitioning algorithm is to
split the NFA into a small
number of balanced partitions,
while minimizing the required
state replications. In
particular, given a threshold
Nmax on the number of states
that can be accommodated on
a particular device or
hardware component, the
algorithm must split the NFA
into as few partitions as
possible, each with size not
exceeding Nmax. Balanced
partitions allow load
balancing within (for GPUs
and Micron’s AP) and across
(for FPGAs) devices, which
ultimately has a positive effect
on throughput. It is worth
noting that existing
partitioning schemes for

generic graphs [31] aim to minimize the size of the cut (number
of inter-partition transitions), but, when applied to NFAs, they
do not necessarily minimize the number of state replications
required to preserve functional equivalence with the
unpartitioned NFA. Thus, the need for a partitioning scheme
tailored to NFAs.

We propose an algorithm that colors the NFA so that each
color represents a partition, and states assigned multiple colors
are shared across partitions and must be replicated in each of
these partitions. In order to meet the requirements above, the
algorithm must limit the number of colors and of states with
multiple colors, while allowing each color to appear in up to
Nmax states. In the following, we call “color size” the number of
states assigned a particular color.

Our algorithm operates in two phases: initial coloring and
color consolidation. In the initial coloring phase, the NFA is
traversed from the entry state and recursively colored until the
size of each color doesn’t exceed Nmax. The color consolidation
phase consolidates multiple colors into one while keeping their
size below the given threshold.

We note that sets of states connected by cyclic transitions
(e.g., states 2 and 3 in Figure 4(a)) cannot be separated into
multiple partitions. We recall that, for partitions to be
independent, inter-partition activations (that is, cross-partition
transitions) must be avoided. As a consequence, a state
belonging to multiple partitions must be replicated along with all
the states connected to it in a cyclic fashion. Thus, we group
states that are cyclically interconnected into “super-states”, and
we handle all the states in a super-state together. For example,
states 2 and 3 of Figure 4(a) form super-state {2, 3} and are
handled as a single state. In order to operate, the algorithm

(a) Reference NFA (b) 1st initial coloring step (c) 2nd initial coloring step

 (d) 3rd initial coloring step (e) Replication reduction step (f) Final consolidation

Figure 4: Example of application of our coloring scheme (Nmax =8).

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

requires super-states to include fewer than Nmax states. If this is
not the case, the NFA cannot be split into independent
partitions. In the presence of dependent partitions, multiple NFA
traversals are required to handle inter-partition activations.
Fortunately, NFAs originated from regular expressions datasets
tend to have only few super-states of small size. This is because
backward-directed transitions in NFAs originate from sub-
pattern repetitions within regular expressions (for example, sub-
pattern (dc)* in Figure 4(a), where string dc can be repeated zero
or more times). Sub-pattern repetitions are rare in real-world
datasets, and are rarely shared by a large number of patterns.

We now detail the operation of the two phases of the
algorithm, and illustrate them in Figure 4. In the example, we
assume that the threshold Nmax is equal to 8.

Initial coloring – The initial coloring procedure starts by
assigning distinct colors to the states connected to the entry
state (or to the super-state to which it belongs). This is
illustrated in Figure 4(b), where the children of the entry state 0
are colored brown, green, yellow, pink, white, blue and orange.
The colors are propagated to all the connected states following
the transitions. The entry state is then assigned all the colors of
its children. As can be seen, this leads to some states (states 11-
12, 14-16, 19-21, beside state 0) be assigned multiple colors. This
operation must be repeated recursively on all generated NFA
partitions until their size does not exceed the threshold Nmax. As
can be seen, after the first coloring step the brown color has size
12 (states 0-9 and 11-12). Therefore, the coloring procedure is
repeated starting from state 1. This causes color brown to be
split into colors red and violet, which are again propagated down
to the terminal states of the NFA (Figure 4(c)). Since color violet
has size 10 (including state 0), the algorithm invokes one
additional recursive step on super-state {2,3}, causing color violet
to be split into colors cyan and grey (Figure 4(d)). Since the
largest color (grey) has now size 8 (equal to Nmax), the initial
coloring phase is terminated.

Color consolidation –While respecting the constraint on the
maximum partition size, the partitioning generated by the initial

coloring step has two limitations: it includes small and
unbalanced partitions, and it leads to significant state
replication. In the example, states 2, 3, 11, 14-16, 19-21 must be
replicated once, states 1 and 12 must be replicated twice, and
state 0 must be replicated 8 times. The coloring consolidation
phase aims to combine different colors into one so as to increase
the partition size, decrease the number of partitions and the
number of state replications required, and achieve more
balanced partitions. This phase is broken down into two steps:
replication reduction and final consolidation. The first step aims to
reduce the number of state replications required by merging
colors. To determine which colors to consolidate, we sort pairs
of colors in descending order according to the number of state
replications that their consolidation would save. In the example,
cyan/grey, yellow/pink and white/blue would save 3 state
replications, green/red would save 2, and red/yellow,
green/yellow, red/cyan and red/grey would save only 1. We then
consider all pair-wise consolidation opportunities in order, and
merge the two colors only if their merging doesn’t violate the
partition size constraint. In the example, we consolidate
yellow+pink into yellow, white+blue into white, and green+red
into green. Figure 4(e) shows the result of the replication
reduction step. In the final consolidation step, we look for
opportunities to consolidate colors according to their size. To
this end, we first sort the colors in descending order by size, and
then traverse the list and consolidate each color with the next
color in the list that doesn’t lead to violating the partition size
constraint (if such color exists). In the example, colors orange
and green are consolidated into orange. Figure 4(f) shows the
final coloring, which leads to 5 partitions: two of size 8 (grey and
orange) and three of size 6 (cyan, yellow and white).

5 EXPERIMENTAL EVALUATION

5.1 Hardware platform
We conducted almost all our experiments on a machine

equipped with a dual 6-core Intel Xeon CPU @ 2.66GHz and

Table 1: Dataset characteristics and traversal information (ranges correspond to traces with pforw=0.5 and pforw=0.9).

Type Name

NFA Characteristics # Partitions Traversal Information

states

trans.

ANML
states

GPU FPGA AP
Avg.

active
set

Max.
active

set

Matches

Inputs w/
matches %

Small
NIDS

l7-filter 2794 124k 3844 1 1 1 3.0-4.8 5-9 4-10 0-0
snort534 9514 79k 10k 1 1 1 1.7-22.8 10-37 9-533 0.01-0.2

B
io

in
fo

rm
at

ic
s

10gene_8k 33k 100k 55k 1 1 4 371.2 617 12286 99.9
10gene_12k 86k 258k 243k 2 1 16 378.8 713 7443 14.2
10gene_16k 138k 415k 230k 3 2 14 378.0 713 493 0.1
10gene_20k 190k 570k 317k 4 2 20 377.4 713 0 0.0
100gene_8k 137k 413k 229k 3 2 16 670.8 826 81476 100
100gene_12k 621k 1863k 1035k 14 9 80 742.3 1382 71140 68.6
100gene_16k 1124k 3372k 1873k 28 16 149 741.6 1387 4997 1.04
100gene_20k 1619k 4858k 2699k 42 22 213 740.1 1386 25 0.01

Sy
nt

h.
 deep-64char 800k 1801k 800k 14 8 76 2.1-2.5 7-7 0-0 0-0

deep-256char 800k 4855k 800.3k 13 8 72 6.3-6.7 11-11 0-0 0-0
shallow-64char 800k 1801k 800.1k 15 7 74 3.1-3.5 7-8 2-1904 0-2.9
shallow-256char 800k 4855k 800.1k 13 8 78 6.1-6.7 12-14 1-2106 0-3.21

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

64GB of memory, running CentOS 6.4. Since some of our AP
syntheses run out-of-memory on that machine, for our AP
experiments we used a server with similar hardware settings but
equipped with 256GB memory. For our GPU experiments we
used an Nvidia Titan X GPU (Maxwell architecture), equipped
with 12GB of global memory and 24 streaming multiprocessors
(SMs), each including 128 cores and 96KB of shared memory. We
used CUDA 7.0. For our FPGA experiments we used a Xilinx
XC6VLX130T device (Virtex-6 family), which includes 20,000
slices (for a total of 160,000 flip-flops and 80,000 LUTs). We used
the Xilinx ISE Design suite v13.2 to perform synthesis, mapping
and place&route of our HDL designs. This FPGA device was
chosen because it is in the same price range (~$1,200) as our
GPU. For AP experiments, we refer to the architecture of a 32-
chip AP-D480. Since Micron’s AP hardware is not yet available
on the market, we don’t have pricing information for it. For the
AP, we used AP SDK v. 1.6.5 to collect resource utilization and
preprocessing data, and performed throughput projections using
the nominal operating frequency (more details in Section 5.3).

5.2 Datasets
We selected datasets allowing to compare the three platforms

on different application domains and on NFAs with varying
characteristics in terms of number of states and transitions,
alphabet size, connectivity and depth. To this end, we used three
types on datasets: small NIDS, bioinformatics, and synthetic.
Recently proposed benchmark suites for automata processing
[32] are not meant for large scale analysis (they include NFAs
with up to about 100k states). Table 1 (columns 3-5) summarizes
the characteristics of the NFAs for the considered datasets.

Small NIDS (Snort538 and l7-filter) are small network
intrusion detection datasets that include 538 and 116 regular
expressions, respectively (see [10] for more details).

Bioinformatics datasets (ngene_kk) consist of a set of
Hamming distance automata used to address a motif-finding
problem [33]. The problem requires identifying all the substrings

of length k that appear on
multiple genes within
hamming distance d, and can
be found in a region of the
gene of length l. Due to
space limitation, here we
show only the results for n
genes from a yeast genome
of about 5000 genes, with
n={10, 100}, k={8, 12, 16, 20},
l=500, d=2 and a 4-symbol
alphabet (A, C, G, T). A
Hamming distance NFA has
(k+1)(d+1)-d(d+1)/2 states,
and each gene region of
length l leads to (l-k+1) of
these NFAs. The NFAs in
Table 1 (used on all three
platforms) have been state-
reduced. However, previous

work [22, 30] has shown that, on the AP, preprocessing time can
be significantly reduced if NFAs with known structure are
precompiled. Thus, on the AP we also use a non state-reduced
variant of these bioinformatics datasets (see Table 5), leading to
networks of n(l-k+1) small NFAs (each with (2d+1)k-d2 STEs)
with fixed topology.

Synthetic automata exhibit the structure of NFAs accepting
sets of regular expressions with shared prefixes: large state
outdegrees in the proximity of the entry state, and low state
outdegrees as we move deeper in the NFA. Our synthetic NFAs
have configurable number of states, alphabet size, entry state
outdegree, outdegree decrease factor γ (the outdegree decreases
as γdepth), and frequency of wildcards, character sets and their
repetitions. We set these parameters so as to generate 800k-state
NFAs with two alphabet sizes (64 and 256), and two structures
(deep and shallow, about 180- and 16-level deep, respectively).

Whenever required, we partition these NFAs with the
algorithm described in Section 4. We recall that the partitioning
threshold is platform-specific (Section 3.5). This leads to the
number of partitions shown in Table 1 (columns 6-8). In order to
simulate the NFA traversal, we use two kinds of input streams.
For bioinformatics datasets, we generate traces of length 500,000
(for 1,000 genes) by randomly selecting symbols from the {A, C,
G, T} alphabet. For NIDS and synthetic datasets, we generate
256k character traces through our trace generator [34], setting
the probability to move deeper in the NFA (pforw) to 0.5 and 0.9.
The traversal characteristics (average and maximum number of
active states per input character, and number and frequency of
matches) are reported in Table 1 (columns 9-12).

5.3 Results
Resource utilization is reported in Table 2 for GPU and

FPGA, and in Table 5 (columns 7-12) for the AP.
For GPU, we recall that the NFA is stored in global memory,

while the active state information (encoded in a bit vector) is
stored in shared memory. In the CSR case, the active state

Table 2: Resource utilization for GPU (ranges correspond to different numbers of streams) and
FPGA (ranges correspond to the minimum and maximum values across partitions)

Type Name

GPU FPGA

devices

GPU Memory Utilization #
devices

FPGA % utilization
shared
(KB)

global (MB)
FF LUT Slice

iNFAnt CSR
Small
NIDS

l7-filter 1 0.6 0.4 0.5-0.6 1 1 1 11
snort534 1 2.3 0.3 0.4-0.4 1 5 5 16

B
io

in
fo

rm
at

ic
s

10gene_8k 1 8.1 0.4 7.6-47.5 1 20 33 86
10gene_12k 1 13.2 1 13.1-78.1 1 53 52 99
10gene_16k 1 12.3 1.6 13.3-74 2 31-54 50-52 97-99
10gene_20k 1 14.8 2.2 16.6-90.3 2 59-59 56-57 92-99
100gene_8k 1 14.9 1.6 15.4-87.8 2 18-67 32-77 75-99

100gene_12k 1 14.8 7.1 27-99.8 9 38-66 62-67 96-99
100gene_16k 1 15.8 15.5 42.2-121.3 16 38-63 61-61 97-99
100gene_20k 1 15.7 22.5 55-133.4 22 31-49 49-74 98-98

Sy
nt

.

deep-64char 1 15.5 6.9 13.7-17.3 8 32-69 22-61 99-99
deep-256char 1 15.8 18.5 25.1-27.6 8 15-69 12-62 34-100

shallow-64char 1 15.8 6.8 13.6-17.3 7 56-68 60-76 94-96
shallow-256char 1 15.8 18.5 25.1-27.6 8 29-69 23-75 97-99

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

information is also stored (in queue format) in global memory,
and therefore the global memory requirement increases with the
number of thread-blocks run. However, as can be seen in Table
2, the global memory utilization is very limited even for the CSR
format, and even the largest dataset occupies only up to 133MB
of the 12GB global memory. We recall that NFA partitioning is
driven by the use of 16-bit state identifiers, and shared memory
stores two bitmaps indicating the states active at the beginning
and the end of each traversal step. Therefore, the use of
partitions with at most 64k states limits the per-block shared
memory utilization to 16KB in the worst case, allowing at least 6
blocks to reside on a SM and hide each other’s memory latencies.

For FPGA, to facilitate the place&route process, we sized the
partitions so as to use up to 70% of the flip-flop capacity. Since
the considered device has twice as many flip-flops as LUTs, on
most experiments this setting leads to near full slice utilization.

For the AP (Table 5), we report both the ideal utilization (the
number of blocks and AP cores that a dataset would require
based on the number of its STEs and reporting
elements), and the utilization numbers
reported by the AP’s SDK (real utilization).
The utilization efficiency in column 11 is the
ratio between the ideal and real block
utilization. As can be seen, due to the
place&route constraints on the routing matrix,
the real utilization is significantly higher than
the ideal one. Note that shallow synthetic
datasets have significantly lower utilization
efficiency (~20%) than deep ones (>80%): this is
because the node out-degree of non-terminal
states is large for shallow and low for deep
datasets, making the former much harder to
route. Due to the generally low utilization
efficiency, we partitioned all the state-reduced
NFAs so that each partition would require 50%
(rather than the whole) half-core capacity.
This led to the number of AP partitions shown

in Table 1 (column 8). In addition, we experienced that
the AP SDK tools run out-of-memory when
processing large datasets. To avoid this, for state-
reduced NFAs we grouped partitions into batches of
32-64 (depending on the transition density of the
dataset), and we run the AP SDK on one batch at a
time. In the table, for each state-reduced dataset we
report the cumulative results over all batches. In case
of large fixed topology datasets (100gene*), which
consist of many small NFAs with the same topology,
we sized each batch so as to use all 32 cores on the
AP. Since the place&route algorithm used by the SDK
is proprietary, this was a trial-and-error process. For
these datasets, we report the number of batches
(which corresponds to the number of AP boards
required), and the per-batch data. As can be seen, for
small k (i.e., small hamming distance NFAs) the
place&route is easier and the number of STEs/batch
and utilization efficiency are higher. Since larger
hamming distance NFAs are harder to place, the

utilization efficiency decreases as k increases.
Traversal throughput is computed using the following

formulas, which assume 8-bit inputs.

We assume that matches are reported every 64K inputs

(maximum IP packet length) for NIDS datasets, every 500 inputs
(length of relevant portion of a gene) for bioinformatics datasets,
and every 1000 inputs for synthetic datasets (Ninputs). For FPGA,
we used the worst-case, post-place&route operating frequency
reported by the Xilinx tools. The number of cycles required to
report the matches (Noutput_processing_cycles) is equal to the ratio
between the number of matching states in the NFA and the
number of output pins on the FPGA device. For the AP, we
performed estimates based on the 133 MHz nominal operating
frequency and the 291 clock cycle output processing time.

Table 3: Traversal throughput (ranges correspond to different numbers of
streams for GPU and to different partitions for FPGA)

Type Name

GPU FPGA

streams

iNFAnt CSR-state CSR-tx Throughput
per device

(Gbps)
Throughput

(Mbps)
Throughput

(Mbps)
Throughput

(Mbps)
Small
NIDS

l7-filter 48-4800 73.0-675.7 1.4-9.47 2.2-19.7 12.16
snort534 48-4800 60.1-466.5 24.2-39.9 40.9-30.1 19.82

B
io

in
fo

rm
at

ic
s

10gene_8k 72-480 21.9-32.5 3.1-3.2 0.6-0.8 2.51
10gene_12k 36-240 7.1-11.9 4.7-4.8 0.6-0.8 1.68
10gene_16k 24-160 5.3-7.9 8.9-14.0 0.6-0.9 1.8-3.2
10gene_20k 18-120 3.2-5.5 7.3-12.5 0.6-0.9 1.2-1.6
100gene_8k 24-160 4.2-7.5 0.5-0.6 0.2-0.3 1.1-3.0
100gene_12k 6-35 0.8-1.4 0.6-0.6 0.2-0.2 1.5-2.4
100gene_16k 3-18 0.3-0.5 1.2-2.2 0.2-0.4 0.7-2.2
100gene_20k 2-12 0.2-0.3 1.0-1.7 0.2-0.3 1.7.3.5

Sy
nt

h.
 deep-64char 6-37 1.5-2.2 1.8-2.7 1.8-2.8 2.5-3.6

deep-256char 6-37 1.7-2.6 0.5-1.7 1.4-2.7 1.7-2.9
shallow-64char 5-32 1.2-1.9 0.4-1.8 0.5-2.2 1.5-1.7
shallow-256char 6-35 1.7-2.7 0.2-1.0 0.3-2.6 1.1-1.9

Table 4: Preprocessing overhead (in case of large datasets, we show minimum and
maximum per-partition data)

Type Name
GPU FPGA

Parsing
(sec)

Mem. L.
gen. (sec)

Loading
mem. (ms)

Parsing
(sec)

Verilog gen.
(sec)

Synt.+
p&r (min)

Small
NIDS

l7-filter 5 0.01 0.004 0.4 0.6 6
snort534 5.1 0.01 0.003 0.6 0.3 6

B
io

in
fo

rm
at

ic
s

10gene_8k 3.2 0.05 3-6 3.3 9.2 37
10gene_12k 5.8 0.3 8-12 7.2 58.28 76
10gene_16k 12 0.5 12-18 4.3-7.7 19.6-60.2 69-78
10gene_20k 12.4 0.9 16-26 7.8-8.2 69.8-71.7 89-129
100gene_8k 12.3 0.4 12-18 3.1-11.2 7.8-99.9 34-165
100gene_12k 70 8.5 47-76 5.5-9.2 29.2-90.4 54-153
100gene_16k 114.8 36.7 99-167 5-8.4 27.9-78.1 54-554
100gene_20k 193.2 80.8 145-249 4-8.9 19.9-93.3 70-92

Sy
nt

.

deep-64char 61.6 7.0 40-80 2.6-5.3 0.4-0.9 73-178
deep-256char 267.8 8.4 110-150 1.5-6.6 0.5-2.6 15-189

shallow-64char 76.5 6.1 40-80 6.6-7.9 0.8-1.0 103-133
shallow-256char 279.5 6.8 120-150 3.6-8.5 3.9-9.9 38-192

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

Table 5: AP Results

Type

Name

batches

ANML-NFA
characteristics

Ideal
utilization

Resource utilization from
SDK profiling

AP

boards

SDK preprocessing
time

Through-
put per
device
(Mbps)

states/
STEs

start
states

report
states

cores

blocks

cores

blocks

% utiliz.
efficiency

Comp
(sec)

p&r
(sec)

total
(min)

Sm

al
l

N
ID

S L7-Filter 1 4k 78 489 1 16 1 99 16.1 1 1 732 16 16946

Snort534 1 11k 24 582 1 43 1 135 31.8 1 2 2261 38 16946

B
io

in
fo

rm
at

ic
s fi

xe
d-

to

po
lo

gy

10gene_8k 1 177k 10k 25k 4 694 6 1089 63.7 1 77 714 14 2690
10gene_20k 1 462k 10k 24k 10 1804 37 7055 25.5 2 1587 2412 68 672
100gene_8k 2 1300k 72k 181k 27 5079 32 6051 83.9 2 2109 5022 122 672
100gene_12k 5 597k 21k 53k 13 2333 32 6123 38.1 5 1383 1861 55 672
100gene_16k 9 436k 12k 29k 9 1704 32 6141 27.7 9 1226 2161 57 672
100gene_20k 12 406k 9k 21k 9 1587 32 6118 25.9 12 1156 2086 55 672

st
at

e-

re
du

ce
d

10gene_8k 1 56k 8 21k 2 218 6 971 22.4 1 68 674 13 2690
10gene_20k 1 317k 8 22k 7 1239 35 6625 18.7 2 1030 2390 58 672
100gene_8k 1 230k 32 136k 5 899 30 5643 15.9 1 1696 6098 131 672
100gene_12k 2 985k 162 201k 21 3850 77 15k 25.6 3 4537 12k 192 672
100gene_16k 5 1746k 300 197k 38 6822 153 29k 23.5 7 5273 13k 331 672
100gene_20k 7 2592k 428 201k 56 10k 256 49k 20.4 13 9132 21k 502 672

Sy
nt

h.
 deep 64char 3 800k 84 4447 18 3128 20 3623 86.3 3 324 300 12 1648

256char 3 752k 130 5096 17 2940 19 3300 89.0 3 404 249 12 1648
shallow 64char 3 779k 101 382k 18 3045 79 15k 20.3 5 2725 11k 224 824

256char 3 801k 193 317k 17 3128 66 12k 26.0 3 2258 43k 757 824

 Throughput data are shown in Table 3 for GPU and FPGA
and in Table 5 for the AP. As can be seen, while able to fit even
large datasets on a single device, GPU reports the lowest
throughput data. In the GPU experiments, we configured the
thread-block size to 256 and 32 for bioinformatics and
NIDS/synthetic datasets, respectively. This is because we
expected bioinformatics datasets to have larger active sets (as
confirmed in Table 1). We recall that the number of thread-
blocks run is equal to the product between the number of
partitions and the number of input streams processed. To avoid
idle SMs and ensure processing all partitions, we set the number
of blocks to be at least equal to the number of SMs and of
partitions. We then increased the number of blocks (and, as a
consequence, of streams) until noticeable throughput
improvements could no longer be observed. We make two
observations. First, GPU resources are better utilized when
processing a large number of input streams, leading to better
throughput. Second, while the iNFAnt kernel greatly
outperforms the CSR kernels on small datasets, the CSR-state
kernel reports better performance on bioinformatics datasets
with large k. On datasets with a large number of partitions,
iNFAnt is penalized by looping through a large number of
transitions that originate from inactive states.

Since large datasets require multiple FPGAs and AP boards
(or multiple iterations through the same board), for FPGAs and
the AP we report the traversal throughput per device. Since for
most partitions the slice capacity is fully utilized, the number of
FPGA devices required is equal to the number of FPGA
partitions (Table 2/column 7), while the number of AP boards
required is reported in Table 5/column 12. For small datasets
requiring only a small portion of the device, both platforms can
run multiple streams by replicating the NFA. In case of FPGA to
utilize ~70% of slice capacity, we run 6 and 4 streams for l7-filter
and snort534 respectively. In case of the AP, we consider that

chips can be grouped into logical cores processing streams in
parallel (Section 2.2). As can be seen, on large datasets (100ups*
and synthetic) FPGAs outperform the AP up to a factor ~2.6x,
while requiring 2-3x more devices than the AP.

Preprocessing cost: In this section, we focus on the platform-
specific preprocessing time. The NFA optimization and
partitioning steps, common to all platforms, take from 3 to 249
sec (smallest to largest dataset). After these two steps, we save
the NFA into file. As can be seen from Table 4, the GPU
preprocessing is mostly related to the parsing of the NFA
partition files, and varies from 5 sec to about 4.5 min. For FPGA,
synthesis and place&route account for most of the preprocessing
time, and preprocessing a large partition may require up to 165
minutes (leading to several hours for the full datasets). Similar
preprocessing times are observed on the AP (for example, the
preprocessing time for the shallow-256-char dataset is about 12
hours). In addition, the preprocessing time increases with the
transition density (deep datasets are preprocessed must faster
than shallow ones), whereas the alphabet size has a lesser effect
(since on the AP transition symbols are associated to STEs and
stored in memory). As mentioned, the AP preprocessing time
can be reduced in case of datasets with known topology (i.e.,
fixed topology datasets) by pre-compilation. However, finding a
configuration that fully uses the AP is a trial-and-error process.

Overall Comparison: Figure 5 summarizes the results (note
that throughput and preprocessing time are in logarithmic scale).
As can be seen, FPGAs provide the best traversal throughputs
(up to ~2.6x those of the AP) at the cost of significant
preprocessing times (~hours); GPUs deliver modest traversal
throughputs (~Mbps) but incur limited preprocessing time
(~seconds-minutes) and can accommodate large datasets on a
single device; Micron’s AP is an intermediate choice between
FPGAs and GPUs, and is most suited for applications that use
datasets consisting of many small NFAs with a fixed topology.

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

Power consumption: While the AP is not yet on the market,
its design aims to a worst-case power consumption of 4W per
chip [23]. Due to lack of space, here we report power data only
on a medium-sized dataset (100genes_12k). Xilinx’s Power
Analyzer estimates the FPGA power consumption to be between
2.09W and 2.36W on different partitions. In contrast, GPU
experiments on Texas State's Marcher system report an average
GPU power consumption of 185.11W and 105.25W on the best
and worst implementations/kernel configurations, respectively.

6 CONCLUSION
To summarize, large datasets with more than 100-200

thousand states must be partitioned in order to be deployed on
GPUs, FPGAs and Micron’s AP. While for GPUs, partitioning is
required only to effectively use the GPU resources (e.g., on-chip
memory), FPGAs and the AP require splitting large NFAs onto
multiple devices. On these large datasets, logic-based FPGA
designs can outperform the AP by a factor ~2x, while requiring
2-3x more devices to accommodate the dataset; GPUs
underperform FPGAs by up to a factor 900x. GPUs in general
deliver low performance on a single input stream, but their
cumulative throughput scales up to thousands of input streams.
GPUs offer the advantage of limited preprocessing time (up to a
few minutes on million-state NFAs), while FPGAs and AP can
take several hours to preprocess the same datasets. Precompiling
the NFA can hide the AP’s preprocessing time, but this is
possible only if the topology of the NFA is known a priori (e.g.,
Hamming or Levenshtein distance NFAs). Finding an NFA
configuration that uses all 32 AP cores is a trial-and-error
process that can require about an hour per experiment. Finally,
due to routing constraints, AP’s SDK can keep utilization
efficiency as low as 20%, while the FPGA utilization is more
predictable given the NFA size.

ACKNOWLEDGMENTS
This work has been supported by NSF awards CNS-1724934 and
CCF-1421765, and by the Institute for Critical Technology and
Applied Science (ICTAS: http://www.ictas.vt.edu).

REFERENCES
[1] S. Kumar et al., “Algorithms to accelerate multiple regular expressions

matching for deep packet inspection,” in Proc. of SIGCOMM 2006.
[2] S. Kumar et al., “Curing regular expressions matching algorithms from

insomnia, amnesia, and acalculia,” in Proc. of ANCS 2007.
[3] S. Kumar et al., “Advanced algorithms for fast and scalable deep packet

inspection,” in Proc. of ANCS 2016.

[4] M. Becchi, and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in Proc. of ANCS 2007.

[5] M. Becchi, and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” in Proc. of CoNEXT 2007.

[6] M. Becchi, and P. Crowley, “Extending finite automata to efficiently match
Perl-compatible regular expressions,” in Proc. of CoNEXT 2008.

[7] R. Smith et al., “Deflating the big bang: fast and scalable deep packet
inspection with extended finite automata,” in Proc. of SIGCOMM 2008.

[8] A. X. Liu, and E. Torng, “An overlay automata approach to regular expression
matching,” in Proc. of INFOCOM 2014.

[9] X. Yu et al., “Revisiting State Blow-up: Automatically Building Augmented-FA
while Preserving Functional Equivalence,” JSAC 2014.

[10] N. Cascarano et al., “iNFAnt: NFA pattern matching on GPGPU devices,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 5, pp. 20-26, 2010.

[11] Y. Zu et al., “GPU-based NFA implementation for memory efficient high speed
regular expression matching,” in Proc. of PPOPP 2012.

[12] X. Yu, and M. Becchi, “GPU acceleration of regular expression matching for
large datasets: exploring the implementation space,” in Proc. of CF 2013.

[13] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching Using
FPGAs,” in Proc. of FCCM 2001.

[14] M. Becchi, and P. Crowley, “Efficient regular expression evaluation: theory to
practice,” in Proc. of ANCS 2008.

[15] Y.-H. E. Yang et al., “Compact architecture for high-throughput regular
expression matching on FPGA,” in Proc. of ANCS 2008.

[16] A. Mitra et al., “Compiling PCRE to FPGA for accelerating SNORT IDS,” in
Proc. of ANCS 2007.

[17] B. C. Brodie et al., “A Scalable Architecture For High-Throughput Regular-
Expression Pattern Matching,” in Proc. of ISCA 2006.

[18] J. Van Lunteren et al., “Designing a Programmable Wire-Speed Regular-
Expression Matching Accelerator,” in Proc. of MICRO 2012.

[19] Y. Fang et al., “Fast support for unstructured data processing: the unified
automata processor,” in Proc. of MICRO 2015.

[20] M. Becchi et al., “Evaluating regular expression matching engines on network
and general purpose processors,” in Proc. of ANCS 2009.

[21] P. Dlugosch et al., “An Efficient and Scalable Semiconductor Architecture for
Parallel Automata Processing,” TPDS, vol. PP, no. 99, pp. 1-1, 2014.

[22] I. Roy, and S. Aluru, “Finding Motifs in Biological Sequences Using the Micron
Automata Processor,” in Proc. of IPDPS 2014.

[23] K. Wang et al., “Association Rule Mining with the Micron Automata
Processor,” in Proc. of IPDPS 2015.

[24] K. Zhou et al., “Regular expression acceleration on the micron automata
processor: Brill tagging as a case study,” Proc. of Big Data 2015.

[25] I. Roy et al., “High Performance Pattern Matching Using the Automata
Processor,” in Proc. of IPDPS 2016.

[26] I. Roy et al., “Algorithmic Techniques for Solving Graph Problems on the
Automata Processor,” in Proc of IPDPS 2016.

[27] K. Wang et al., “Sequential pattern mining with the Micron automata
processor,” in Proc. of CF 2016.

[28] J. E. Hopcroft, and J. Ullman, Introduction to automata theory, languages, and
computation: Addison-Wesley, Reading, Massachusetts, 1979.

[29] F. Yu et al., “Fast and memory-efficient regular expression matching for deep
packet inspection,” in Proc. of ANCS 2006.

[30] K. Angstadt et al., “RAPID Programming of Pattern-Recognition Processors,” in
Proc. of ASPLOS 2016.

[31] G. Karypis, and V. Kumar, “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM J. Sci. Comp., v. 20, n. 1, pp. 359-392, 1998.

[32] J. Wadden et al., “ANMLzoo: a benchmark suite for exploring bottlenecks in
automata processing engines and architectures,” in Proc. of IISWC 2016.

[33] A. Todd et al., “Parallel Gene Upstream Comparison via Multi-Level Hash
Tables on GPU,” in Proc. of ICPADS 2016.

[34] M. Becchi et al., “A workload for evaluating deep packet inspection
architectures,” in Proc of IISWC 2008.

Figure 5: Traversal throughput, device utilization (in terms of number of devices) and overall preprocessing time

International Conference on Supercomputing (ICS), Chicago, IL, June, 2017

