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ABSTRACT 
Many established and emerging applications perform at their 
core some form of pattern matching, a computation that maps 
naturally onto finite automata abstractions. As a consequence, in 
recent years there has been a substantial amount of work on 
high-speed automata processing, which has led to a number of 
implementations targeting a variety of parallel platforms: CPUs, 
GPUs, FPGAs, ASICs, and Network Processors. More recently, 
Micron has announced its Automata Processor (AP), a DRAM-
based accelerator of non-deterministic finite automata (NFA). 
Despite the abundance of work in this domain, the advantages 
and disadvantages of different automata processing accelerators 
and the innovation space in this area are still unclear. 

In this work we target this problem and propose a toolchain 
to allow an apples-to-apples comparison of NFA acceleration 
engines on three platforms: GPUs, FPGAs and Micron’s AP. We 
discuss the automata optimizations that are applicable to these 
three platforms. We perform an evaluation on large-scale 
datasets: to this end, we propose an NFA partitioning algorithm 
that minimizes the number of state replications required to 
maintain functional equivalence with an unpartitioned NFA, and 
we evaluate the scalability of each implementation to both large 
NFAs and large numbers of input streams. Our experimental 
evaluation covers resource utilization, traversal throughput, and 
preprocessing overhead and shows that the FPGA provides the 
best traversal throughputs (on the order of Gbps) at the cost of 
significant preprocessing times (on the order of hours); GPUs 
deliver modest traversal throughputs (on the order of Mbps), but 
offer low preprocessing times (on the order of seconds or 
minutes) and good pattern densities (they can accommodate 
large datasets on a single device); Micron’s AP delivers 
throughputs, pattern densities, and preprocessing times that are 
intermediate between those of FPGAs and GPUs, and it is most 
suited for applications that use datasets consisting of many small 
NFAs with a topology that is fixed and known a priori.  

1 INTRODUCTION 
Many established and emerging applications perform at their 

core some form of pattern matching, a computation that maps 

naturally onto finite automata abstractions. In biology, for 
example, several genomics tasks, such as motif discovery, 
orthology inference, shotgun and de novo assembly, involve 
string-matching operations on genomics data. In turn, advances 
in DNA sequencing technology have led to increasingly large 
volumes of data available for these applications, resulting in a 
significant increase in their computational requirements. In the 
networking domain, several applications such as network 
intrusion detection, content-based routing, and application-level 
filtering require inspecting network packets for potentially large 
sets of predefined patterns, and they typically must perform this 
operation at the rate of packet arrival on the router interface.   

Given the number and relevance of applications requiring 
efficient pattern matching, there has been a substantial amount 
of work on high-speed automata processing, and this work has 
originated from different communities: from the networking to 
the reconfigurable computing and computer architecture to the 
parallel computing community. These efforts have led to a 
number of algorithmic [1-9] and architectural solutions targeting 
different parallel platforms: from CPUs to GPUs [10-12] to 
FPGAs [13-16] to ASICs [17-19] to Network Processors [20]. 
More recently, Micron has announced their Automata Processor 
[21], a DRAM-based accelerator of non-deterministic finite 
automata (NFA) that has been showcased on a variety of 
applications: motif discovery in biological sequences [22], 
association rule mining [23], brill tagging [24], high-speed 
regular expression matching for network intrusion detection 
[25], graph processing [26], and sequential pattern mining [27].  

Despite this abundance of work on high-speed automata 
processing, there is still lack of clarity as to how existing 
software and hardware solutions are related to and compare 
with each other. There are several reasons for this.  

First, existing solutions are based on different automata 
models: either non-deterministic or deterministic finite automata 
(NFAs and DFAs, respectively). While functionally equivalent, 
NFAs and DFAs have practical differences – in terms of resource 
requirements and traversal behavior – that are strongly 
dependent on the characteristics of the underlying pattern set. 
While there has been a substantial body of work proposing 
automata designs that trade off the advantages and 
disadvantages of NFAs and DFAs [1-9], no automata model is 
preferable on all datasets. This makes it hard to provide a fair 
comparison between automata processors relying on different 
automata models.  

Second, some automata processing architectures are designed 
to optimize the peak performance of a single input stream, while 
others offer better support for stream-level concurrency.  

Third, applications relying on finite automata must operate 
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in two steps: in the preprocessing step, the required automaton 
must be generated, optimized, compiled, and loaded onto the 
target accelerator (through memory configuration and/or 
place&route operations); in the traversal step, the application 
performs pattern matching by traversing the automaton guided 
by the content of the input text. Most of the existing automata 
processing engines have been designed to optimize automata 
traversal, often at the cost of a significant preprocessing cost. 
While the preprocessing time is unimportant for some categories 
of applications (for example, network intrusion detection 
systems can operate for days or weeks between reconfigurations 
of their pattern sets), its effect on performance can be significant 
for other applications with more dynamic pattern sets or 
traversal times in the order of a few seconds. Unfortunately, the 
majority of the previous studies on Micron’s AP neglect to 
report the preprocessing overhead (or part of it) [21-24] or 
report substantial speedups over preexisting CPU tools (not 
necessarily based on automata) by comparing the full execution 
time of these tools to only the traversal time of the automata-
based solution (on the order of seconds or milliseconds), 
omitting the preprocessing time of the AP-design (on the order 
of minutes) in the speedup calculation [25]. This can lead to 
results that are misleading or of limited practical use.  

  To target these problems and provide an apples-to-apples 
comparison, we select automata accelerator designs that rely on 
the same automata model: NFAs. Since NFAs do not suffer from 
state explosion, their use allows us to perform an evaluation on 
large-scale datasets without posing any restrictions on the kind 
of patterns supported. Specifically, we compare GPU- and FPGA-
based NFA engines with Micron’s AP. Micron’s AP extends 
NFAs’ functionality with counters and boolean elements. To 
ensure functional equivalence and the same degree of 
programmability across the considered platforms, we extend 
existing FPGA- and GPU-based designs to support these features, 
and we adopt the same programming interface for all platforms: 
namely, Micron’s Automata Network Markup Language 
(ANML). Different platforms offer different automata density – 
to take this into account, we perform an analysis on non-trivial 
dataset sizes, which require partitioning large NFAs across 
multiple devices. Besides considering peak performance on a 
single input stream, we evaluate the scalability of the considered 
automata processor designs to multiple concurrent inputs. 
Finally, we evaluate the costs of the different preprocessing steps 
required by the considered architectures, and we study how the 
size of the automaton and the density of its transitions affect 
some of the preprocessing stages (e.g., place&route on Micron’s 

AP and FPGA).  
To summarize, we make the following contributions: 

• We extend existing FPGA- and GPU-based automata 
processing designs to support Micron’s AP counters and 
boolean elements, and we propose a compiler toolchain to 
automatically deploy extended NFAs (in ANML form) onto 
these three platforms.  

• We propose an NFA partitioning scheme aimed at 
minimizing the amount of state replication required to 
handle large NFAs while preserving functional equivalence 
with a single unpartitioned NFA. 

• For GPU deployment, we explore different state layouts and 
kernels suited to NFAs with varying characteristics. 

• We perform an apples-to-apples comparison between 
Micron’s AP, GPU- and FPGA-based NFA accelerator 
designs on large-scale datasets. Our evaluation covers 
resource utilization, throughput and preprocessing costs for 
real-world NFAs used in networking and bioinformatics 
applications, as well as synthetic datasets covering regular 
expressions datasets with various characteristics. 

2 BACKGROUND AND RELATED WORK 

2.1 Background on Automata Processing 
Regular expression matching has traditionally been 

implemented by representing the pattern-set through finite 
automata (FA) [28]. The matching operation is equivalent to a 
FA traversal guided by the content of the input stream. Worst-
case performance guarantees can be offered by bounding the 
amount of processing performed per input character. However, 
techniques to keep per-character processing low involve 
increasing the size of the finite automaton, the basic data 
structure in the regular expression matching engine. As the size 
of pattern-sets and the expressiveness of individual patterns 
increase, limiting the size of the automaton to fit on reasonably 
provisioned hardware platforms becomes challenging. Thus, the 
exploration space is characterized by a trade-off between the size 
of the automaton and the worst-case bound on the amount of 
per character processing.  

NFAs and DFAs are at the two extremes in this exploration 
space. NFAs have a limited size but can require expensive per-
character processing, whereas DFAs offer limited per-character 
processing at the cost of a possibly large automaton. In Figure 1 
we show the NFA and DFA accepting three simple patterns 
(a+bc, bcd+ and cde). In the figure, states active after processing 
text aabc are colored gray. In the NFA, the number of states and 
transitions is limited by the number of symbols in the pattern-
set. In the DFA, every state presents one transition for each 
character in the alphabet (∑). Each DFA state corresponds to a 
set of NFA states that can be simultaneously active [28]; 
therefore, the number of states in a DFA equivalent to an N-state 
NFA can potentially be 2N. In practice, previous work [2, 5, 29] 
has shown that this so-called “state explosion” happens only in 
the presence of complex patterns (typically those containing 
repetitions of large character sets). Since each DFA state 
corresponds to a set of simultaneously active NFA states, DFAs 
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Figure 1: (a) NFA and (b) DFA accepting regular expressions 
a+bc, bcd+ and cde. Accepting states are bold. States active 
after processing text aabc are colored gray.  
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ensure minimal per-character processing (only one state 
transition is taken for each input character).  

From an implementation perspective, existing regular 
expression matching engines can be classified into two 
categories: memory-based [1-12, 17, 19], and logic-based [13-16]. 
Within the former, the FA is stored in memory; within the latter, 
it is stored in combinational and sequential logic. Memory-based 
implementations can be deployed on various platforms (GPUs, 
network processors, ASICs, FPGAs); logic-based 
implementations typically target FPGAs. In a memory-based 
implementation, design goals are the minimization of the 
memory size needed to store the automaton and of the memory 
bandwidth needed to operate it. Similarly, in a logic-based 
implementation the design aims at minimizing the logic 
utilization while allowing fast operation (that is, a high clock 
frequency). Existing proposals targeting DFA-based, memory-
centric solutions have focused on designing compression 
mechanisms to reduce the DFA memory footprint and novel 
automata to alleviate the state explosion problem [1-9]. Despite 
the complexity of their design, memory-centric solutions have 
three advantages: fast reconfigurability, low power consumption, 
and scalability in the number of input streams. On the other 
hand, logic-centric solutions allow for easily achieving peak 
worst-case performance on a single input stream, at the expense 
of lack of scalability in the number of concurrent inputs. 

2.2 Micron’s Automata Processor Overview 
Micron's Automata Processor [21] is a DRAM-based, 

reconfigurable accelerator that simulates NFA traversal at high 
speed. The AP includes three kinds of programmable elements 
stored in SDRAM: State Transition Elements (STE), Counter 
Elements (CE) and Boolean Elements (BE), which implement 
states/transitions, counters and logical operators between states, 
respectively. Each STE includes a 256-bit mask (one bit per 
ASCII symbol), and symbols triggering state transitions are 
associated to states (and encoded into STEs) rather than to 
transitions. Transitions between states are then implemented 
through a routing matrix consisting of programmable switches, 
buffers, routing lines, and cross-point connections. The routing 
capacity is limited by tradeoffs between clock rate, propagation 
delays and power consumption, and these constraints influence 
place&route of automata onto the AP hardware. Micron's 
current generation of AP board (AP-D480) includes 16 or 32 
chips organized into two to four ranks (8 chips per rank), and its 
design can scale up to 48 chips. Each AP chip consists of two 
half-cores. There are no routes either between half-cores or 

inter-chips, which implies that NFA transitions across half-cores 
and chips are not possible. Programmable elements are 
organized in blocks: each block consists of 16 rows, where a row 
includes eight groups of two STEs and one special purpose 
element (CE or BE). Each chip contains a total of 49,152 STEs, 
768 CE and 2,304 BE, organized in 192 blocks and equally 
residing in both half-cores. Current boards allow up to 6,144 
elements per chip to be set as report elements. 

AP automata can be described in ANML (an XML-based 
language). Recently proposed high-level programming languages 
for the AP are mapped and compiled into ANML [30]. Micron’s 
SDK includes a toolchain that parses ANML designs, compiles 
them into internal objects consisting of subgraphs, places and 
routes these subgraphs onto the AP hardware, and finally 
generates a binary image that can be used to program the AP 
memory and routing matrix. Once the AP has been programmed, 
it will be able to simulate the NFA traversal. AP chips can be 
grouped into logical cores of 2, 4 or 8, each processing a stream 
of 8-bit input characters [25]. The AP nominally operates at a 
133MHz frequency, and, in absence of matches, it processes one 
input character per clock cycle from all input streams. Once 
matches occur, AP generates reporting events in vector format 
and stores them in an output-buffer; reporting matches to the 
host system requires from 91 to 291 clock cycles.  

3 TOOLCHAIN  

3.1 Overall design 
Figure 2 shows the toolchain designed to deploy ANML 

specifications on GPU, FPGA and Micron’s AP. In the figure, 
grey boxes represent the software components that we have 
designed and implemented. The last two modules leading to 
FPGA and AP are Xilinx and Micron’s software development kits 
used for the final synthesis/compilation, map, and place&route 
on these two devices.  

The input to the toolchain is an ANML file that contains one 
or more automata networks (each including one or more NFAs). 
We don’t impose any constraints on these networks: in other 
words, they don’t need to be designed to fit a particular device or 
optimized for it. Once parsed, these networks are stored in our 
toolchain using an internal representation for later processing 
and optimization. We distinguish two categories of 
optimizations: automata-specific and platform-specific. Since the 
GPU, FPGA and AP are used as NFA traversal accelerators, 
optimizations to the automaton apply to all platforms.  In our 
previous work [14], we have described several NFA 
optimizations (state reduction, alphabet compression and software 
striding) and put them to practice on FPGA; these optimizations 
apply to GPUs and AP as well. Automata-specific optimizations 
can be selectively enabled and disabled. Platform-specific 
optimizations are related to the way the NFA is encoded for the 
particular target device; these optimizations include compact and 
efficient memory encodings, logic utilizations, and striding 
mechanisms that are specific to a particular hardware platform. 
Since the internals of the operation of the AP hardware and its 
software stack (including the compilation, map and place&route 
processes) are proprietary, AP-specific optimizations are 

 
Figure 2: Our toolchain 
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deferred to the AP SDK tools (last phase of the toolchain). The 
partitioning step, that takes a potentially large network and 
breaks it into multiple NFA partitions so that each of them can 
fit the target hardware, is performed after the automata-specific 
optimization step. This allows partitioning to be done on an 
already optimized NFA. Our partitioning algorithm is platform-
independent, but its configuration depends on the target 
platform. The code and configuration generation step produces the 
files required for the final deployment of the automata network 
on the hardware. For GPUs, all is needed is a configuration file 
that includes the information necessary to load the NFA 
partitions into memory, and a header file with the definition of 
the boolean connectors in the ANML specification. FPGAs are 
configured through a Verilog file describing the NFA network 
and its interface. The AP is configured through an ANML file; 
this output file differs from the input file in that it contains a 
partitioned and optimized automata network. 

3.2 GPU implementation 
We reuse and extend iNFAnt [18], an NFA-traversal engine 

for GPUs. iNFAnt stores the NFA in device memory, and encodes 
the transition table as set of (source, destination) pairs indexed 
by the input character. In order to allow efficient execution, 
iNFAnt stores the set of active states in shared memory in bit-
vector form. For each input character, iNFAnt retrieves from 
memory all the transitions on that symbol, and, if their source 
state is active, the engine updates the active state vector with the 
destination state information. In iNFAnt, each thread-block is 
assigned an input stream, and threads within a block process the 
state transitions and update the state vector cooperatively.  

We extended iNFAnt with the following functionalities: 
Support for multiple NFA partitions – We map each NFA 

partition to a thread-block, allowing multiple blocks to process 
the same input stream on different partitions. The transition lists 
corresponding to different partitions are laid out sequentially, 
and an indexing array maps each partition to the proper set of 
thread-blocks, each operating on a different input stream. 

Traversal kernels based on compressed sparse row (CSR) layout 
– We consider an alternative memory layout where transitions 
represented as (input symbol, destination) pairs are indexed by 
the source state. For each input symbol, this layout allows 
processing only the transitions that originate from active states. 
We store the identifiers of the active states in a queue in global 
memory. We consider two variants of this kernel: CSR-state and 
CSR-tx, the former mapping active states to threads, and the 
latter mapping outgoing transitions from active states to threads. 

Support for counters and boolean elements – We associate a 

special state to each counter and boolean element, and store 
these special states at the end of the state vector. The activation 
of special states triggers code implementing the operation of the 
particular counter or boolean element. Boolean operators are 
also associated combinational code that is stored in an 
automatically generated header file. 

3.3 FPGA implementation 
On FPGA, NFA processing can be realized in two ways: either 

by implementing a traversal engine that accesses the NFA stored 
in memory, or by directly encoding the NFA in logic. Most logic-
based NFA implementations are based on the one-hot encoding 
scheme [13], in which states are represented as flip-flops while 
transitions are implemented by and-ing and or-ing the outputs 
of the flip-flops with the decoded input character. For example, 
Figure 3 shows the one-hot encoding representation of the NFA 
accepting regular expression ab+[cd]e. The main advantage of 
this scheme is that it limits the traversal time to one clock cycle 
per input character independent of the number of states that are 
active (this property is shared by Micron’s AP). On the other 
hand, this implementation suffers from two limitations: first, 
updating the NFA requires reprogramming the device; second, 
multiple input stream support requires logic replication. The 
pros and cons of a memory-based FPGA design are comparable 
to those of a GPU solution: easy support for multiple input 
streams at the cost of irregular and unpredictable memory access 
patterns, leading to dataset dependent performance. In this paper 
we use the optimized logic-based implementation that we have 
described in our previous work [14], and extend it to support 
counters and boolean elements (a trivial extension). 

3.4 Automata-specific optimizations 
Our toolchain includes three automata-specific optimizations: 

state reduction, alphabet compression and software striding [14]. 
Here, we briefly mention their effect on the considered 
platforms. 

State reduction (which merges duplicate NFA paths) reduces 
the memory requirements on GPU and AP, and the logic 
requirements on FPGA. In addition, it reduces the number of 
states that can be active in parallel, which for GPU is beneficial 
to the throughput. 

Alphabet compression (which consolidates the alphabet based 
on the symbols appearing on the NFA transitions) reduces the 
wiring and LUT utilization on FPGA. However, because the AP 
stores a 256-bit mask in each STE, this optimization does not 
benefit AP unless combined with software striding. 

Software striding (which allows processing multiple 
characters in one step) can be beneficial on all platforms if 
combined with alphabet reduction. This technique is applicable 
to the AP only if the alphabet generated by combining alphabet 
reduction and software striding does not exceed 256 symbols. 
GPUs and FPGAs offer also platform-specific striding schemes 
[6, 10, 15], which we have included in our toolchain. 

3.5 Partitioning criteria 
An NFA must be partitioned if it exceeds the resources 

 
Figure 3: NFA accepting regular expressions ab+[cd]e and 
corresponding one-hot encoding representation 
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available on a particular device. Here, we indicate the platform-
specific partitioning criteria we use. In Section 4, we describe 
our proposed partitioning algorithm. 

GPU: GPU partitioning is required if the shared or global 
memory capacity is exceeded, or if the state identifier space is 
exhausted. In this paper, we use 16-bit state identifiers, leading 
to a maximum of 65536 states per NFA partition. This constraint 
is more restrictive than those on the global and shared memory 
capacity (and, due to thread-block concurrency, is not a limiting 
factor on performance – see Section 5).  

FPGA: The logic design used stores states in flip-flops and 
transitions in LUTs. We experimentally found flip-flops to be the 
bottleneck resource. Thus, we perform NFA partitioning when 
the number of NFA states exceeds that of available flip-flops. 

AP – The AP does not allow transitions across half-cores, and 
has a limited number of STEs, Counter Elements and Boolean 
Elements per half-core (see Section 2.2). Thus, the AP NFA 
partitioning criterion is based on these constraints. 

4 NFA PARTITIONING ALGORITHM 
In this section, we describe our NFA partitioning algorithm. 

For the sake of simplicity, we discuss the algorithm on 
traditional NFAs: its extension to counters and boolean elements 
is straightforward. In order to preserve functional equivalence, 
NFA partitioning requires state replication. For example, let us 
assume to break the NFA of Figure 4(a) into two partitions to be 
deployed and operated on two devices: one partition containing 
states from 0 to 16, and the other containing states from 17 to 24. 
In order to maintain functional equivalence with the original 
NFA, the entry state 0, which is shared by the patterns matched 
in the both partitions, must be replicated into the second 
partition. In general, very large NFAs may require replication of 

sets of states shared by several 
patterns.  

The goal of our 
partitioning algorithm is to 
split the NFA into a small 
number of balanced partitions, 
while minimizing the required 
state replications. In 
particular, given a threshold 
Nmax on the number of states 
that can be accommodated on 
a particular device or 
hardware component, the 
algorithm must split the NFA 
into as few partitions as 
possible, each with size not 
exceeding Nmax. Balanced 
partitions allow load 
balancing within (for GPUs 
and Micron’s AP) and across 
(for FPGAs) devices, which 
ultimately has a positive effect 
on throughput. It is worth 
noting that existing 
partitioning schemes for 

generic graphs [31] aim to minimize the size of the cut (number 
of inter-partition transitions), but, when applied to NFAs, they 
do not necessarily minimize the number of state replications 
required to preserve functional equivalence with the 
unpartitioned NFA. Thus, the need for a partitioning scheme 
tailored to NFAs. 

We propose an algorithm that colors the NFA so that each 
color represents a partition, and states assigned multiple colors 
are shared across partitions and must be replicated in each of 
these partitions. In order to meet the requirements above, the 
algorithm must limit the number of colors and of states with 
multiple colors, while allowing each color to appear in up to 
Nmax states. In the following, we call “color size” the number of 
states assigned a particular color. 

Our algorithm operates in two phases: initial coloring and 
color consolidation. In the initial coloring phase, the NFA is 
traversed from the entry state and recursively colored until the 
size of each color doesn’t exceed Nmax. The color consolidation 
phase consolidates multiple colors into one while keeping their 
size below the given threshold. 

We note that sets of states connected by cyclic transitions 
(e.g., states 2 and 3 in Figure 4(a)) cannot be separated into 
multiple partitions. We recall that, for partitions to be 
independent, inter-partition activations (that is, cross-partition 
transitions) must be avoided. As a consequence, a state 
belonging to multiple partitions must be replicated along with all 
the states connected to it in a cyclic fashion. Thus, we group 
states that are cyclically interconnected into “super-states”, and 
we handle all the states in a super-state together. For example, 
states 2 and 3 of Figure 4(a) form super-state {2, 3} and are 
handled as a single state. In order to operate, the algorithm 

 
(a) Reference NFA   (b) 1st initial coloring step             (c) 2nd initial coloring step 

  
          (d) 3rd initial coloring step  (e) Replication reduction step  (f) Final consolidation  

Figure 4: Example of application of our coloring scheme (Nmax =8). 
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requires super-states to include fewer than Nmax states. If this is 
not the case, the NFA cannot be split into independent 
partitions. In the presence of dependent partitions, multiple NFA 
traversals are required to handle inter-partition activations. 
Fortunately, NFAs originated from regular expressions datasets 
tend to have only few super-states of small size. This is because 
backward-directed transitions in NFAs originate from sub-
pattern repetitions within regular expressions (for example, sub-
pattern (dc)* in Figure 4(a), where string dc can be repeated zero 
or more times). Sub-pattern repetitions are rare in real-world 
datasets, and are rarely shared by a large number of patterns.  

We now detail the operation of the two phases of the 
algorithm, and illustrate them in Figure 4. In the example, we 
assume that the threshold Nmax is equal to 8. 

Initial coloring – The initial coloring procedure starts by 
assigning distinct colors to the states connected to the entry 
state (or to the super-state to which it belongs). This is 
illustrated in Figure 4(b), where the children of the entry state 0 
are colored brown, green, yellow, pink, white, blue and orange. 
The colors are propagated to all the connected states following 
the transitions. The entry state is then assigned all the colors of 
its children. As can be seen, this leads to some states (states 11-
12, 14-16, 19-21, beside state 0) be assigned multiple colors. This 
operation must be repeated recursively on all generated NFA 
partitions until their size does not exceed the threshold Nmax. As 
can be seen, after the first coloring step the brown color has size 
12 (states 0-9 and 11-12). Therefore, the coloring procedure is 
repeated starting from state 1. This causes color brown to be 
split into colors red and violet, which are again propagated down 
to the terminal states of the NFA (Figure 4(c)). Since color violet 
has size 10 (including state 0), the algorithm invokes one 
additional recursive step on super-state {2,3}, causing color violet 
to be split into colors cyan and grey (Figure 4(d)). Since the 
largest color (grey) has now size 8 (equal to Nmax), the initial 
coloring phase is terminated. 

Color consolidation –While respecting the constraint on the 
maximum partition size, the partitioning generated by the initial 

coloring step has two limitations: it includes small and 
unbalanced partitions, and it leads to significant state 
replication. In the example, states 2, 3, 11, 14-16, 19-21 must be 
replicated once, states 1 and 12 must be replicated twice, and 
state 0 must be replicated 8 times. The coloring consolidation 
phase aims to combine different colors into one so as to increase 
the partition size, decrease the number of partitions and the 
number of state replications required, and achieve more 
balanced partitions. This phase is broken down into two steps: 
replication reduction and final consolidation. The first step aims to 
reduce the number of state replications required by merging 
colors. To determine which colors to consolidate, we sort pairs 
of colors in descending order according to the number of state 
replications that their consolidation would save. In the example, 
cyan/grey, yellow/pink and white/blue would save 3 state 
replications, green/red would save 2, and red/yellow, 
green/yellow, red/cyan and red/grey would save only 1. We then 
consider all pair-wise consolidation opportunities in order, and 
merge the two colors only if their merging doesn’t violate the 
partition size constraint. In the example, we consolidate 
yellow+pink into yellow, white+blue into white, and green+red 
into green. Figure 4(e) shows the result of the replication 
reduction step. In the final consolidation step, we look for 
opportunities to consolidate colors according to their size. To 
this end, we first sort the colors in descending order by size, and 
then traverse the list and consolidate each color with the next 
color in the list that doesn’t lead to violating the partition size 
constraint (if such color exists). In the example, colors orange 
and green are consolidated into orange. Figure 4(f) shows the 
final coloring, which leads to 5 partitions: two of size 8 (grey and 
orange) and three of size 6 (cyan, yellow and white). 

5 EXPERIMENTAL EVALUATION 

5.1 Hardware platform 
We conducted almost all our experiments on a machine 

equipped with a dual 6-core Intel Xeon CPU @ 2.66GHz and 

Table 1: Dataset characteristics and traversal information (ranges correspond to traces with pforw=0.5 and pforw=0.9). 

Type Name 

NFA Characteristics # Partitions Traversal Information 

# 
states 

#  
trans. 

# ANML 
states 

GPU FPGA AP 
Avg.  

active 
set 

Max.  
active 

set 

# 
Matches 

Inputs w/ 
matches % 

Small 
NIDS 

l7-filter 2794 124k 3844 1 1 1 3.0-4.8 5-9 4-10 0-0 
snort534 9514 79k 10k 1 1 1 1.7-22.8 10-37 9-533 0.01-0.2 

B
io

in
fo

rm
at

ic
s 

10gene_8k 33k 100k 55k 1 1 4 371.2 617 12286 99.9 
10gene_12k 86k 258k 243k 2 1 16 378.8 713 7443 14.2 
10gene_16k 138k 415k 230k 3 2 14 378.0 713 493 0.1 
10gene_20k 190k 570k 317k 4 2 20 377.4 713 0 0.0 
100gene_8k 137k 413k 229k 3 2 16 670.8 826 81476 100 
100gene_12k 621k 1863k 1035k 14 9 80 742.3 1382 71140 68.6 
100gene_16k 1124k 3372k 1873k 28 16 149 741.6 1387 4997 1.04 
100gene_20k 1619k 4858k 2699k 42 22 213 740.1 1386 25 0.01 

Sy
nt

h.
 deep-64char 800k 1801k 800k 14 8 76 2.1-2.5 7-7 0-0 0-0 

deep-256char 800k 4855k 800.3k 13 8 72 6.3-6.7 11-11 0-0 0-0 
shallow-64char 800k 1801k 800.1k 15 7 74 3.1-3.5 7-8 2-1904 0-2.9 
shallow-256char 800k 4855k 800.1k 13 8 78 6.1-6.7 12-14 1-2106 0-3.21 
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64GB of memory, running CentOS 6.4. Since some of our AP 
syntheses run out-of-memory on that machine, for our AP 
experiments we used a server with similar hardware settings but 
equipped with 256GB memory. For our GPU experiments we 
used an Nvidia Titan X GPU (Maxwell architecture), equipped 
with 12GB of global memory and 24 streaming multiprocessors 
(SMs), each including 128 cores and 96KB of shared memory. We 
used CUDA 7.0. For our FPGA experiments we used a Xilinx 
XC6VLX130T device (Virtex-6 family), which includes 20,000 
slices (for a total of 160,000 flip-flops and 80,000 LUTs). We used 
the Xilinx ISE Design suite v13.2 to perform synthesis, mapping 
and place&route of our HDL designs. This FPGA device was 
chosen because it is in the same price range (~$1,200) as our 
GPU. For AP experiments, we refer to the architecture of a 32-
chip AP-D480. Since Micron’s AP hardware is not yet available 
on the market, we don’t have pricing information for it. For the 
AP, we used AP SDK v. 1.6.5 to collect resource utilization and 
preprocessing data, and performed throughput projections using 
the nominal operating frequency (more details in Section 5.3). 

5.2 Datasets 
We selected datasets allowing to compare the three platforms 

on different application domains and on NFAs with varying 
characteristics in terms of number of states and transitions, 
alphabet size, connectivity and depth. To this end, we used three 
types on datasets: small NIDS, bioinformatics, and synthetic. 
Recently proposed benchmark suites for automata processing 
[32] are not meant for large scale analysis (they include NFAs 
with up to about 100k states). Table 1 (columns 3-5) summarizes 
the characteristics of the NFAs for the considered datasets. 

Small NIDS (Snort538 and l7-filter) are small network 
intrusion detection datasets that include 538 and 116 regular 
expressions, respectively (see [10] for more details).  

Bioinformatics datasets (ngene_kk) consist of a set of 
Hamming distance automata used to address a motif-finding 
problem [33]. The problem requires identifying all the substrings 

of length k that appear on 
multiple genes within 
hamming distance d, and can 
be found in a region of the 
gene of length l. Due to 
space limitation, here we 
show only the results for n 
genes from a yeast genome 
of about 5000 genes, with 
n={10, 100}, k={8, 12, 16, 20}, 
l=500, d=2 and a 4-symbol 
alphabet (A, C, G, T). A 
Hamming distance NFA has 
(k+1)(d+1)-d(d+1)/2 states, 
and each gene region of 
length l leads to (l-k+1) of 
these NFAs. The NFAs in 
Table 1 (used on all three 
platforms) have been state-
reduced. However, previous 

work [22, 30] has shown that, on the AP, preprocessing time can 
be significantly reduced if NFAs with known structure are 
precompiled. Thus, on the AP we also use a non state-reduced 
variant of these bioinformatics datasets (see Table 5), leading to 
networks of n(l-k+1) small NFAs (each with (2d+1)k-d2 STEs) 
with fixed topology.   

Synthetic automata exhibit the structure of NFAs accepting 
sets of regular expressions with shared prefixes: large state 
outdegrees in the proximity of the entry state, and low state 
outdegrees as we move deeper in the NFA. Our synthetic NFAs 
have configurable number of states, alphabet size, entry state 
outdegree, outdegree decrease factor γ (the outdegree decreases 
as γdepth), and frequency of wildcards, character sets and their 
repetitions. We set these parameters so as to generate 800k-state 
NFAs with two alphabet sizes (64 and 256), and two structures 
(deep and shallow, about 180- and 16-level deep, respectively). 

Whenever required, we partition these NFAs with the 
algorithm described in Section 4. We recall that the partitioning 
threshold is platform-specific (Section 3.5). This leads to the 
number of partitions shown in Table 1 (columns 6-8). In order to 
simulate the NFA traversal, we use two kinds of input streams. 
For bioinformatics datasets, we generate traces of length 500,000 
(for 1,000 genes) by randomly selecting symbols from the {A, C, 
G, T} alphabet. For NIDS and synthetic datasets, we generate 
256k character traces through our trace generator [34], setting 
the probability to move deeper in the NFA (pforw) to 0.5 and 0.9. 
The traversal characteristics (average and maximum number of 
active states per input character, and number and frequency of 
matches) are reported in Table 1 (columns 9-12).  

5.3 Results 
Resource utilization is reported in Table 2 for GPU and 

FPGA, and in Table 5 (columns 7-12) for the AP. 
For GPU, we recall that the NFA is stored in global memory, 

while the active state information (encoded in a bit vector) is 
stored in shared memory. In the CSR case, the active state 

Table 2: Resource utilization for GPU (ranges correspond to different numbers of streams) and 
FPGA (ranges correspond to the minimum and maximum values across partitions) 

Type Name 

GPU FPGA 

# 
devices 

GPU Memory Utilization # 
devices 

FPGA % utilization 
shared 
(KB) 

global (MB) 
FF LUT Slice 

iNFAnt CSR 
Small 
NIDS 

l7-filter 1 0.6 0.4 0.5-0.6 1 1 1 11 
snort534 1 2.3 0.3 0.4-0.4 1 5 5 16 

B
io

in
fo

rm
at

ic
s 

10gene_8k 1 8.1 0.4 7.6-47.5 1 20 33 86 
10gene_12k 1 13.2 1 13.1-78.1 1 53 52 99 
10gene_16k 1 12.3 1.6 13.3-74 2 31-54 50-52 97-99 
10gene_20k 1 14.8 2.2 16.6-90.3 2 59-59 56-57 92-99 
100gene_8k 1 14.9 1.6 15.4-87.8 2 18-67 32-77 75-99 

100gene_12k 1 14.8 7.1 27-99.8 9 38-66 62-67 96-99 
100gene_16k 1 15.8 15.5 42.2-121.3 16 38-63 61-61 97-99 
100gene_20k 1 15.7 22.5 55-133.4 22 31-49 49-74 98-98 

Sy
nt

. 

deep-64char 1 15.5 6.9 13.7-17.3 8 32-69 22-61 99-99 
deep-256char 1 15.8 18.5 25.1-27.6 8 15-69 12-62 34-100 

shallow-64char 1 15.8 6.8 13.6-17.3 7 56-68 60-76 94-96 
shallow-256char 1 15.8 18.5 25.1-27.6 8 29-69 23-75 97-99 
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information is also stored (in queue format) in global memory, 
and therefore the global memory requirement increases with the 
number of thread-blocks run. However, as can be seen in Table 
2, the global memory utilization is very limited even for the CSR 
format, and even the largest dataset occupies only up to 133MB 
of the 12GB global memory. We recall that NFA partitioning is 
driven by the use of 16-bit state identifiers, and shared memory 
stores two bitmaps indicating the states active at the beginning 
and the end of each traversal step. Therefore, the use of 
partitions with at most 64k states limits the per-block shared 
memory utilization to 16KB in the worst case, allowing at least 6 
blocks to reside on a SM and hide each other’s memory latencies.  

For FPGA, to facilitate the place&route process, we sized the 
partitions so as to use up to 70% of the flip-flop capacity. Since 
the considered device has twice as many flip-flops as LUTs, on 
most experiments this setting leads to near full slice utilization.  

For the AP (Table 5), we report both the ideal utilization (the 
number of blocks and AP cores that a dataset would require 
based on the number of its STEs and reporting 
elements), and the utilization numbers 
reported by the AP’s SDK (real utilization). 
The utilization efficiency in column 11 is the 
ratio between the ideal and real block 
utilization. As can be seen, due to the 
place&route constraints on the routing matrix, 
the real utilization is significantly higher than 
the ideal one. Note that shallow synthetic 
datasets have significantly lower utilization 
efficiency (~20%) than deep ones (>80%): this is 
because the node out-degree of non-terminal 
states is large for shallow and low for deep 
datasets, making the former much harder to 
route. Due to the generally low utilization 
efficiency, we partitioned all the state-reduced 
NFAs so that each partition would require 50% 
(rather than the whole) half-core capacity. 
This led to the number of AP partitions shown 

in Table 1 (column 8). In addition, we experienced that 
the AP SDK tools run out-of-memory when 
processing large datasets. To avoid this, for state-
reduced NFAs we grouped partitions into batches of 
32-64 (depending on the transition density of the 
dataset), and we run the AP SDK on one batch at a 
time. In the table, for each state-reduced dataset we 
report the cumulative results over all batches. In case 
of large fixed topology datasets (100gene*), which 
consist of many small NFAs with the same topology, 
we sized each batch so as to use all 32 cores on the 
AP. Since the place&route algorithm used by the SDK 
is proprietary, this was a trial-and-error process. For 
these datasets, we report the number of batches 
(which corresponds to the number of AP boards 
required), and the per-batch data. As can be seen, for 
small k (i.e., small hamming distance NFAs) the 
place&route is easier and the number of STEs/batch 
and utilization efficiency are higher. Since larger 
hamming distance NFAs are harder to place, the 

utilization efficiency decreases as k increases. 
Traversal throughput is computed using the following 

formulas, which assume 8-bit inputs.  

 
We assume that matches are reported every 64K inputs 

(maximum IP packet length) for NIDS datasets, every 500 inputs 
(length of relevant portion of a gene) for bioinformatics datasets, 
and every 1000 inputs for synthetic datasets (Ninputs). For FPGA, 
we used the worst-case, post-place&route operating frequency 
reported by the Xilinx tools. The number of cycles required to 
report the matches (Noutput_processing_cycles) is equal to the ratio 
between the number of matching states in the NFA and the 
number of output pins on the FPGA device. For the AP, we 
performed estimates based on the 133 MHz nominal operating 
frequency and the 291 clock cycle output processing time.  

Table 3: Traversal throughput (ranges correspond to different numbers of 
streams for GPU and to different partitions for FPGA) 

Type Name 

GPU FPGA 
# 

streams 
 

iNFAnt CSR-state CSR-tx Throughput 
per device 

(Gbps) 
Throughput 

(Mbps) 
Throughput 

(Mbps) 
Throughput 

(Mbps) 
Small 
NIDS 

l7-filter 48-4800 73.0-675.7 1.4-9.47 2.2-19.7 12.16 
snort534 48-4800 60.1-466.5 24.2-39.9 40.9-30.1 19.82 

B
io

in
fo

rm
at

ic
s 

10gene_8k 72-480 21.9-32.5 3.1-3.2 0.6-0.8 2.51 
10gene_12k 36-240 7.1-11.9 4.7-4.8 0.6-0.8 1.68 
10gene_16k 24-160 5.3-7.9 8.9-14.0 0.6-0.9 1.8-3.2 
10gene_20k 18-120 3.2-5.5 7.3-12.5 0.6-0.9 1.2-1.6 
100gene_8k 24-160 4.2-7.5 0.5-0.6 0.2-0.3 1.1-3.0 
100gene_12k 6-35 0.8-1.4 0.6-0.6 0.2-0.2 1.5-2.4 
100gene_16k 3-18 0.3-0.5 1.2-2.2 0.2-0.4 0.7-2.2 
100gene_20k 2-12 0.2-0.3 1.0-1.7 0.2-0.3 1.7.3.5 

Sy
nt

h.
 deep-64char 6-37 1.5-2.2 1.8-2.7 1.8-2.8 2.5-3.6 

deep-256char 6-37 1.7-2.6 0.5-1.7 1.4-2.7 1.7-2.9 
shallow-64char 5-32 1.2-1.9 0.4-1.8 0.5-2.2 1.5-1.7 
shallow-256char 6-35 1.7-2.7 0.2-1.0 0.3-2.6 1.1-1.9 

 

Table 4: Preprocessing overhead (in case of large datasets, we show minimum and 
maximum per-partition data) 

Type Name 
GPU FPGA 

Parsing 
(sec) 

Mem. L.  
gen. (sec) 

Loading 
mem. (ms) 

Parsing  
(sec) 

Verilog gen. 
(sec) 

Synt.+ 
p&r (min) 

Small 
NIDS 

l7-filter 5 0.01 0.004 0.4 0.6 6 
snort534 5.1 0.01 0.003 0.6 0.3 6 

B
io

in
fo

rm
at

ic
s 

10gene_8k 3.2 0.05 3-6 3.3 9.2 37 
10gene_12k 5.8 0.3 8-12 7.2 58.28 76 
10gene_16k 12 0.5 12-18 4.3-7.7 19.6-60.2 69-78 
10gene_20k 12.4 0.9 16-26 7.8-8.2 69.8-71.7 89-129 
100gene_8k 12.3 0.4 12-18 3.1-11.2 7.8-99.9 34-165 
100gene_12k 70 8.5 47-76 5.5-9.2 29.2-90.4 54-153 
100gene_16k 114.8 36.7 99-167 5-8.4 27.9-78.1 54-554 
100gene_20k 193.2 80.8 145-249 4-8.9 19.9-93.3 70-92 

Sy
nt

. 

deep-64char 61.6 7.0 40-80 2.6-5.3 0.4-0.9 73-178 
deep-256char 267.8 8.4 110-150 1.5-6.6 0.5-2.6 15-189 

shallow-64char 76.5 6.1 40-80 6.6-7.9 0.8-1.0 103-133 
shallow-256char 279.5 6.8 120-150 3.6-8.5 3.9-9.9 38-192 
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Table 5: AP Results 
 
 

Type 

 
 

Name 

 
#  

batches 

ANML-NFA 
characteristics 

Ideal 
utilization 

Resource utilization from  
SDK profiling 

 
# AP 

boards 

SDK preprocessing 
time 

Through- 
put per 
device 
(Mbps) 

# states/ 
STEs 

# start 
states 

# report 
states 

#  
cores 

#  
blocks 

#  
cores 

#  
blocks 

% utiliz. 
efficiency 

Comp 
(sec) 

p&r  
(sec) 

total  
(min) 

  
Sm

al
l 

N
ID

S L7-Filter 1 4k 78 489 1 16 1 99 16.1 1 1 732 16 16946 

Snort534 1 11k 24 582 1 43 1 135 31.8 1 2 2261 38 16946 

B
io

in
fo

rm
at

ic
s fi

xe
d-

 
to

po
lo

gy
 

10gene_8k 1 177k 10k 25k 4 694 6 1089 63.7 1 77 714 14 2690 
10gene_20k 1 462k 10k 24k 10 1804 37 7055 25.5 2 1587 2412 68 672 
100gene_8k 2 1300k 72k 181k 27 5079 32 6051 83.9 2 2109 5022 122 672 
100gene_12k 5 597k 21k 53k 13 2333 32 6123 38.1 5 1383 1861 55 672 
100gene_16k 9 436k 12k 29k 9 1704 32 6141 27.7 9 1226 2161 57 672 
100gene_20k 12 406k 9k 21k 9 1587 32 6118 25.9 12 1156 2086 55 672 

st
at

e-
 

re
du

ce
d 

10gene_8k 1 56k 8 21k 2 218 6 971 22.4 1 68 674 13 2690 
10gene_20k 1 317k 8 22k 7 1239 35 6625 18.7 2 1030 2390 58 672 
100gene_8k 1 230k 32 136k 5 899 30 5643 15.9 1 1696 6098 131 672 
100gene_12k 2 985k 162 201k 21 3850 77 15k 25.6 3 4537 12k 192 672 
100gene_16k 5 1746k 300 197k 38 6822 153 29k 23.5 7 5273 13k 331 672 
100gene_20k 7 2592k 428 201k 56 10k 256 49k 20.4 13 9132 21k 502 672 

Sy
nt

h.
 deep 64char 3 800k 84 4447 18 3128 20 3623 86.3 3 324 300 12 1648 

256char 3 752k 130 5096 17 2940 19 3300 89.0 3 404 249 12 1648 
shallow 64char 3 779k 101 382k 18 3045 79 15k 20.3 5 2725 11k 224 824 

256char 3 801k 193 317k 17 3128 66 12k 26.0 3 2258 43k 757 824 

 Throughput data are shown in Table 3 for GPU and FPGA 
and in Table 5 for the AP.  As can be seen, while able to fit even 
large datasets on a single device, GPU reports the lowest 
throughput data. In the GPU experiments, we configured the 
thread-block size to 256 and 32 for bioinformatics and 
NIDS/synthetic datasets, respectively. This is because we 
expected bioinformatics datasets to have larger active sets (as 
confirmed in Table 1). We recall that the number of thread-
blocks run is equal to the product between the number of 
partitions and the number of input streams processed. To avoid 
idle SMs and ensure processing all partitions, we set the number 
of blocks to be at least equal to the number of SMs and of 
partitions. We then increased the number of blocks (and, as a 
consequence, of streams) until noticeable throughput 
improvements could no longer be observed. We make two 
observations. First, GPU resources are better utilized when 
processing a large number of input streams, leading to better 
throughput. Second, while the iNFAnt kernel greatly 
outperforms the CSR kernels on small datasets, the CSR-state 
kernel reports better performance on bioinformatics datasets 
with large k. On datasets with a large number of partitions, 
iNFAnt is penalized by looping through a large number of 
transitions that originate from inactive states.  

Since large datasets require multiple FPGAs and AP boards 
(or multiple iterations through the same board), for FPGAs and 
the AP we report the traversal throughput per device. Since for 
most partitions the slice capacity is fully utilized, the number of 
FPGA devices required is equal to the number of FPGA 
partitions (Table 2/column 7), while the number of AP boards 
required is reported in Table 5/column 12. For small datasets 
requiring only a small portion of the device, both platforms can 
run multiple streams by replicating the NFA. In case of FPGA to 
utilize ~70% of slice capacity, we run 6 and 4 streams for l7-filter 
and snort534 respectively. In case of the AP, we consider that 

chips can be grouped into logical cores processing streams in 
parallel (Section 2.2). As can be seen, on large datasets (100ups* 
and synthetic) FPGAs outperform the AP up to a factor ~2.6x, 
while requiring 2-3x more devices than the AP.  

Preprocessing cost: In this section, we focus on the platform-
specific preprocessing time. The NFA optimization and 
partitioning steps, common to all platforms, take from 3 to 249 
sec (smallest to largest dataset). After these two steps, we save 
the NFA into file. As can be seen from Table 4, the GPU 
preprocessing is mostly related to the parsing of the NFA 
partition files, and varies from 5 sec to about 4.5 min. For FPGA, 
synthesis and place&route account for most of the preprocessing 
time, and preprocessing a large partition may require up to 165 
minutes (leading to several hours for the full datasets). Similar 
preprocessing times are observed on the AP (for example, the 
preprocessing time for the shallow-256-char dataset is about 12 
hours). In addition, the preprocessing time increases with the 
transition density (deep datasets are preprocessed must faster 
than shallow ones), whereas the alphabet size has a lesser effect 
(since on the AP transition symbols are associated to STEs and 
stored in memory). As mentioned, the AP preprocessing time 
can be reduced in case of datasets with known topology (i.e., 
fixed topology datasets) by pre-compilation. However, finding a 
configuration that fully uses the AP is a trial-and-error process.  

Overall Comparison: Figure 5 summarizes the results (note 
that throughput and preprocessing time are in logarithmic scale). 
As can be seen, FPGAs provide the best traversal throughputs 
(up to ~2.6x those of the AP) at the cost of significant 
preprocessing times (~hours); GPUs deliver modest traversal 
throughputs (~Mbps) but incur limited preprocessing time 
(~seconds-minutes) and can accommodate large datasets on a 
single device; Micron’s AP is an intermediate choice between 
FPGAs and GPUs, and is most suited for applications that use 
datasets consisting of many small NFAs with a fixed topology. 
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Power consumption: While the AP is not yet on the market, 
its design aims to a worst-case power consumption of 4W per 
chip [23]. Due to lack of space, here we report power data only 
on a medium-sized dataset (100genes_12k). Xilinx’s Power 
Analyzer estimates the FPGA power consumption to be between 
2.09W and 2.36W on different partitions. In contrast, GPU 
experiments on Texas State's Marcher system report an average 
GPU power consumption of 185.11W and 105.25W on the best 
and worst implementations/kernel configurations, respectively. 

6 CONCLUSION 
To summarize, large datasets with more than 100-200 

thousand states must be partitioned in order to be deployed on 
GPUs, FPGAs and Micron’s AP. While for GPUs, partitioning is 
required only to effectively use the GPU resources (e.g., on-chip 
memory), FPGAs and the AP require splitting large NFAs onto 
multiple devices. On these large datasets, logic-based FPGA 
designs can outperform the AP by a factor ~2x, while requiring 
2-3x more devices to accommodate the dataset; GPUs 
underperform FPGAs by up to a factor 900x. GPUs in general 
deliver low performance on a single input stream, but their 
cumulative throughput scales up to thousands of input streams. 
GPUs offer the advantage of limited preprocessing time (up to a 
few minutes on million-state NFAs), while FPGAs and AP can 
take several hours to preprocess the same datasets. Precompiling 
the NFA can hide the AP’s preprocessing time, but this is 
possible only if the topology of the NFA is known a priori (e.g., 
Hamming or Levenshtein distance NFAs). Finding an NFA 
configuration that uses all 32 AP cores is a trial-and-error 
process that can require about an hour per experiment. Finally, 
due to routing constraints, AP’s SDK can keep utilization 
efficiency as low as 20%, while the FPGA utilization is more 
predictable given the NFA size.  
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