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Abstract—As high-performance computing (HPC) moves to-
wards the exascale era, large-scale scientific simulations are
generating enormous datasets. Many techniques (e.g., in-situ
methods, data sampling, and compression) have been proposed
to help visualize these large datasets under various constraints
such as storage, power, and energy. However, evaluating these
techniques and understanding the trade-offs (e.g., performance,
efficiency, and quality) remains a challenging task.

To enable exploration of the design space across such trade-
offs, we propose the Exploration Test Harness (ETH), an ar-
chitecture for the early-stage exploration of visualization and
rendering approaches, job layout, and visualization pipelines.
ETH covers a broader parameter space than current large-scale
visualization applications such as ParaView and VisIt. It also
promotes the study of simulation-visualization coupling strategies
through a data-centric approach, rather than requiring coupling
with a specific scientific simulation code. Furthermore, with
experimentation on an extensively instrumented supercomputer,
we study more metrics of interest than was previously possible.
Importantly, ETH will help to answer important what-if scenarios
and trade-off questions in the early stages of pipeline develop-
ment, helping scientists to make informed choices about how to
best couple a simulation code with visualization at extreme scale.

Index Terms—In-situ Techniques, High-Performance Comput-
ing, Design-space Exploration, Raycasting, Energy Efficiency

I. INTRODUCTION

Power, storage, and data movement have emerged as first-
order design constraints in supercomputing systems. For exam-
ple, the U.S. Department of Energy imposed a power budget of
20-30 MW for candidate exascale systems [2]. The applications
running on these machines are also limited by their aggregate
I/O bandwidth (60 TB/s) and storage capacity (1000 PB) [2].
Such constraints hamper our ability to visualize and analyze
extreme-scale datasets via conventional methods [25], [26].
In response, researchers have developed numerous techniques
(e.g., in-situ methods [5], data sampling [34], compression [20],
and job layout optimization [6], [29]) to address the challenges
associated with large datasets. The goal of this paper is to
empower domain scientists in choosing the best approach for
in-situ visualization from a complex space of design trade-offs.

Scientists using traditional workflows have developed rules of
thumb for how to sample, store, and visualize their data on the
resources that have been available to them, and these rules of
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thumb are embodied in the current generation of visualization
systems (e.g., Paraview [10] or VisIt [19]). These workflows
consist of a computational science/simulation stage, followed
by visualization and analysis as a decoupled post-processing
stage. Further, current visualization systems generally utilize
geometry-pipeline algorithms that leverage high-performance
rasterization systems for real-time performance on workstation-
level problems.

However, such rules may not apply in the exascale era for
many well-recognized reasons. It becomes much too costly (in
both time and energy) to write results to secondary storage
between the computation and analysis stages, leading to the
adoption of in-situ methods [5] that perform visualization and
analysis of computation results as they are computed, rather
than as a post-process applied to data that has been saved to
disk. In effect, we replace the post-processing workflow of
Figure 1 (top) with the in-situ workflow of Figure 1 (bottom)
and work to address the coupling between the two (represented
by the thick black line).

Figure 1 Pictorial representation of post-processing workflow
(top) and in-situ workflow (bottom). Exploring the requirements
of the design space of possible in-situ workflows is the focus
of the ETH architecture.

In-situ methods minimize the need to write large datasets
to secondary storage by processing the raw data into extracts
that reflect the information contained in the raw data that is
of actual interest to the scientist. For example, cosmology
investigators use n-body smooth-particle hydrodynamics to
model the development of the universe; while the algorithm
tracks very large numbers of particles, the science is particularly
interested in the distribution of halos, which are computed by
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statistically processing the evolving particles. Rather than save
the particles themselves and run the statistics later, in-situ
methods apply the statistics as the particles are evolved in the
simulation and then generate the vastly smaller halo data.

Another example arises in visualizing simulation results.
Rather than save the raw data of every time-step to disk, thus
resulting in a huge dataset for later visualization into animation,
we can compute and save a subset of time-step images as the
data is computed. The resulting difference in the size of the
raw data and time-step images is so large that we can compute
and save many images in-situ in the time it takes to output the
raw data [3].

In general, it is difficult to instrument simulation codes for
in-situ analysis of all the cases that the simulation code is put
through. For instance, MPAS-Ocean [28] can be used to study
many aspects of the ocean; different applications of MPAS-
Ocean will require different extracts — (1) the distribution
and transfer of kinetic energy and (2) the distribution of
chemical species through the ocean. Thus, it is impractical
to insert the analysis directly into the complex simulation
code for each use; instead, the developer codes to an interface
that communicates with a customized analysis component to
perform the case-specific analysis. This two-part architecture —
a large simulation computation communicating via an interface
to a potentially comparably-sized analysis component is at the
heart of in-situ processing.

In-situ pipelines can be executed in many ways. Figure 2
shows four possible architectures of in-situ pipelines. In each
case, we see the simulation and analysis positioned in processes
residing in nodes in an inter-process communications domain.
In the upper cases of Figure 2, the simulation and analysis are
co-located on the same nodes, enabling them to communicate
using shared memory. In these cases, the resources of the node
are necessarily shared by the two tasks and each impacts the
other; one can choose to divide the cores and memory between
the two tasks, allowing them to run concurrently, or in time so
that (for example) each has access to the full computational
capability of the node in its turn.

The lower cases in Figure 2 instead use separate compu-
tational resources for each. Here we allocate separate sets
of nodes for each workload and use the high-speed parallel
inter-process communications capabilities of a supercomputer
to move data from one set to the other. This, however, leads
to a potential load-balancing issue since resources may be
difficult to move between the two workloads; in some cases,
the analysis may wait for the computation and vice versa.

Thus, the design-space for in-situ computation is large
and highly multi-dimensional. Different choices may (should)
produce the same results, but potentially at very different costs
in time, power, energy, and storage. Importantly, the ‘sweet spot’
for a given case may be very dependent on the specifics of the
case rather than the simulation and analysis codes themselves.
Given a specific science workload consisting of simulation
code, initial conditions, and analysis task, it is impractical to
configure the simulation for the specifics of the analysis and
then run alternative in-situ configurations for evaluation.

Figure 2 Four alternative architectures for in-situ visualiza-
tion: simulation and analysis co-resident in each processes;
simulation and analysis in separate processes on same node;
simulation and analysis in separate subsets of the distributed
system with same and differing numbers of nodes for each.

Insights gained from our earlier experiments [1] have shown
that when studying in-situ approaches, the behavior of the
application can be largely factored out. We therefore can replace
the simulation with a proxy for the simulation; a task that
has access to the same raw data that the simulation produce
internally, but which is much easier to reconfigure for different
in-situ architectures. To do so, we make a preliminary run of
the simulation itself on the science case, and write data out as
if for simple post-processing analysis, but in abbreviated form
to produce typical data but much more limited in scope. Our
simulation proxy then reads the simulation data into memory
and presents it to the simulation/analysis interface as if by the
simulation itself. We can then easily test the analysis workload
against real simulation data in varying in-situ architectures.
In effect, we replace the standard abstract in-situ architecture
given in Figure 1 (bottom) with the more flexible architecture
given in Figure 3 while operating on data that is representative
of that which the simulation will produce in a production run.

Figure 3 Diagram showing the ETH architecture approach
to design space exploration. Simulation data is written to disk
by a simulation application. That data can then be read into
ETH’s proxy appication, and tested in a variety of execution
configurations.

A. Contributions

The specific contributions of this paper, and of the Explo-
ration Test Harness (ETH) architecture are as follows:
• A first-of-its-kind architecture for answering “what if”

questions. Our work will facilitate a deep understanding
about the trade-offs among different operations, sampling,

IPDPS 2020 New Orleans



visualization pipelines, and coupling. ETH code is avail-
able at https://github.com/ascr-ecx/eth.

• An architecture that runs on data, rather than requir-
ing coupling to a science code. While other frameworks
can operate on data, the design of ETH ensures that we can
even answer questions pertaining to coupling optimizations
without real simulation-visualization code coupling (see
Figure 4a). This means experiments can be run without
investment in coupling the in-situ pipeline with a specific
code - an important gain in flexibility.

• Built-in exploration of multiple rendering approaches.
In particular, the toolkit includes a raycasting approach that
operates on the raw data and a geometry-based approach
that performs traditional triangle-based operations (see
Figure 5).

• Results from experiments on representative data types
(grid and points) across different configurations. In
particular, we have conducted experiments on two classes
of data — points and grids — that represent two important
classes of data that extreme-scale applications create.

Simulation

Code
Adaptor
(Hooks)

Code modified and compiled with 

different adaptors for each task, 

sampling frequency, and layout.

int main(int argc, char* argv[])

{

MPI_Init(&argc, &argv)

Grid grid = new Grid(numPoints, numCells);

Attributes attributes = newAttributes(&grid, temperature, velocity);

CoprocessInitialize();

int numSteps = 100;

for (int step=0; i<numSteps; step++)

{

UpdateAttributes(&grid, step);

if (MPI_Rank % 4 == 0)  

if (step % 10 == 0)

CoProcess(&grid, attributes.velocity);

}

CoProcessFinalize();

MPI_Finalize();

return 0;

}

Visualization

Scripts

A simple tightly-coupled sim-viz application

a. Exploration with existing frameworks

b. Exploration with ETH

Figure 4 Existing frameworks require extensive modifications
to a large code base for design-space exploration. With ETH,
data is read from disk into simulation proxies and sent to
visualization proxies where they are rendered to output artifacts.
Design-space exploration requires changes only to configuration
files and a single 260 source lines of code (SLOC) simulation
proxy.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents an overview of
our ETH architecture, and Section IV describes the parameter
space explored in this paper. The experimental setup and results
are presented in Sections V and VI, respectively. Section VIII
concludes our paper.

II. RELATED WORK

There are a number of mature visualization frameworks for
in-situ and post-processing visualization of large-scale scientific

a. Raycast image b. Geometry-based image

Figure 5 Sample images from datasets tested and rendered
with ETH. Different rendering pipelines, coupling strategies,
and sampling approaches can all be tested in many config-
urations with the toolkit. Here we show both a raytraced
and geometry-based rendering of an asteroid impact from an
xRAGE simulation.

data. Early instances of in-situ implementations focused on
tightly integrating a visualization routine with a simulation
routine (e.g., pV3 [15]). These implementations are typically
customized for a specific purpose such as for monitoring or
steering a simulation. Modern frameworks, on the other hand,
provide a great deal of flexibility. Though useful, this flexibility
means that contemporary visualization frameworks are largely
ill-suited for rapid design-space exploration. A majority of
the visualization frameworks can be classified into one of the
following two categories:

• Those designed for a specific purpose and narrow in
scope. CUMULVS [18], EPSN [8], and SCIRun [16] are
task-specific for computational steering; yt [31] is data-
type specific for AMR data; Nessie framework [23] is
designed to be application-specific; and QIso [35] is
for extracting and operating upon surfaces. Owing to
their narrow focus, they are ill-suited for design-space
exploration.

• Those focused on integration with a real-world appli-
cation rather than exploratory research. Some exam-
ples in this category include Catalyst [4], ADIOS [24],
GLEAN [32], VisIt [19], and Damaris/Viz [7], and
Libsim [36]. While these frameworks provide a vast
array of options to explore the in-situ visualization space,
the effort required to use these tools for design-space
exploration is significantly high. For instance, to get an
in-situ setup running with Catalyst [11], one has to
compile and configure Catalyst, the simulation code,
and write a custom adapter. This added complexity makes
this class of in-situ framework ill-suited for exploration
of the design space.

Some of the other frameworks are designed to encourage
exploration by easing the burden of integration through
simplified design or by narrowing the tool’s focus (e.g., by
operating only with mini-apps). Strawman [21] belongs to

IPDPS 2020 New Orleans



this category with one of its stated goal being to explore in-
situ solutions. Much like Catalyst, it also requires integration
with applications (or mini-apps) by writing adaptors. Like the
full-fledged visualization toolkits, using such tools for design-
space exploration would also be time-consuming due to the
additional time cost involved in writing adaptors, compiling
and running the simulation. ETH simplifies the evaluation
process by eliminating the need for writing adaptors, compiling
and running the simulation, and coupling data management
frameworks (e.g., ADIOS and Damaris) with visualization
frameworks (e.g., ParaView/Catalyst and VisIt).

Why not use existing toolkits in the “post-processing” mode
and directly operate on the data? In our earlier design-space
experiments, we attempted to use ParaView/Catalyst to perform
the study directly on the data. However, our experiences with
the setups presented in Figure 4a showed that these setups are
not appropriate for ParaView/Catalyst, which also lacks good
transport mechanisms for the data. One would have to setup
Catalyst with a data management framework like ADIOS or
write one’s own transport code, neither of which are simple
tasks [12]. Furthermore, getting custom rendering working with
existing frameworks is a significantly more involved process
compared to a tool such as ETH.

III. EXPLORATION TEST HARNESS (ETH)

The Exploration Test Harness (ETH) is a lightweight, open-
source testing harness that promotes exploration of a variety
of analysis and visualization pipelines in many different
operations, work distributions, and mappings onto hardware.
The toolkit is based on VTK [30], which is a core capability
for the analysis and visualization community. VTK implements
a data-centric pipeline of operators, filters and rendering
operations that operate on data, then pass it along to the
next element in the pipeline. There are several important
capabilities of the test harness, which are discussed below.
These capabilities are the classes of parameters that are varied
in the tests run for this paper.

ETH operates on data and does not require code coupling.
ETH loads test data from disk, and this has several advantages
over other systems. First, ETH can run on many different
science domains, without changing the toolkit. Because it is
based on VTK, any dataset that VTK reads can be used in tests.
Existing toolkits tend to be based on proxy apps, which contain
simplified versions of the physics of their related simulation.
Operating on real data is critical to testing the visualization and
analysis operators as simulated data does not generally contain
enough complexity to test and exercise interesting analysis and
visualization operations.

ETH has easily configurable visualization operations. A
critical feature of a useful testing system is a way to modify
analysis and visualization operations so that they approximate
those that are to be tested. Again, since ETH is based on VTK,
many operations can be easily added to the pipelines tested,
and they can be specific to the data and visualizations that
are of interest. This means that ETH can generate specific

visualization products that serve as good proxies for perceptual
and cognitive test products.

ETH can run with different process-couplings. Given the
number of different hardware and process options available
today, it is useful to study different configurations of parallel
jobs. ETH can be configured to run pairs of simulation proxy
and visualization proxy processes in three ways: 1) coupled
into a single process, or 2) as communicating processes, which
enables the processes to run on the same nodes, thereby
avoiding any I/O operations, or 3) on different nodes, enabling
testing using differing numbers of nodes and on heterogeneous
systems.

ETH can run different rendering pipelines. Traditional
visualization workflows use algorithms that iterate over the
input data to extract intermediate geometrical representations
of the data that can then be rendered using OpenGL, which
then iterates over the intermediate data to determine each
element’s contribution to the output image. Recent technical
advances [17], [27], [33] make it practical to support raycasting
renderers that operate directly on data, avoiding the need for
intermediate representations and the memory space they require.
Further, in many cases, raycasting can produce significantly
better images at lower cost, particularly as datasets get large.
Since the choice of visualization back-ends significantly affects
a system’s overall performance and the effectiveness of the
results, ETH can be configured for alternative rendering back-
ends as shown in Figure 6, enabling this dimension to be
explored as it affects the overall system performance.

Figure 6 Diagram showing options for pipeline execution
inside the visualization process. We can send the result of
some set of operations to different rendering pipelines. In this
case, we can compare a traditional geometry-based rendering
approach with a raycasting approach that operates directly
on the data, and takes advantage of new software rendering
libraries that are optimized for this.

A. Design of ETH

ETH uses a simulation proxy, executing in place of the
simulation itself. The basic unit of granularity is a pair of
processes, each of which can perform analysis or visualization
operations on real simulation data as shown in Figure 4b.
The ETH simulation proxy reads data from the disk and
then operates on the data in parallel. An experiment can
then be run over different process or node configurations,
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and different rendering pipelines to produce artifact on disk.
The system can accommodate a wide range of analysis and
visualization operations in either a simulation process or an
analysis process, so the toolkit can be customized to operate
on a user’s specific data, and perform visualizations that are
simplified or specifically tuned to the user’s work flow. Modes
include unified (single process), core-to-core, and node-to-
node. There are two rendering pipelines supported as well –
raycasting (non-geometric) and geometry-based rendering.

B. ETH Proxy and User-generated Simulation Data

Because each simulation typically has its own native data
format, our design requires that the data is exported as VTK
data objects. Instrumenting simulations to produce VTK objects
is well understood, and mature toolkits are available (Catalyst,
for Paraview and libsim for Visit). This means there is a ready
path for a user to export new types of simulation results in
this format.

The ETH simulation proxy requires that each parallel process
of the proxy is able to load the data that it will pass to the
in-situ interface. Thus the idealized architecture of Figure 3
is better represented in the current implementation as Figure
7. ETH requires that the input consists of VTK data. This
means that users can adapt their specific simulation data to a
common format and can take advantage of the ETH capabilities,
regardless of the scientific domain of the user data.

Figure 7 Experiment workflow for ETH with user-supplied
data reformatting

C. Execution Details

As described above, ETH runs with pairs of simulation
and visualization proxies coupled together into one process,
or running in separate processes and communicating via the
socket layer. In the first case, experiments are easily run using
the standard batch scheduler.

When the simulation and visualization proxies run in
separate processes, the two sets of proxy processes must
exchange information that enables the visualization proxy
processes to connect to their paired simulation proxy processes.
This is done by starting the parallel application in two steps:
first, the simulation proxy application is started. Each process
of the application then adds its assigned IP address and port
number to a globally accessible layout file, then opens its port
and waits for connection. The visualization proxy application
is then started. Each process of the application then references
the global layout file, determines the location of the simulation

proxy(s) it will receive data from, waits for the corresponding
port to open, and then establishes the connection.

When the simulation and visualization proxy applications
run on the same nodes, this is again easy to start: the job script
simply begins the simulation proxy application first, in the
background, and then starts the visualization proxy application
in the foreground.

When the simulation and visualization proxy applications run
on separate sets of nodes, several alternatives exist depending
on the mix of nodes required; on homogeneous systems, a
single job allocating the total number of nodes required, and
MPI arguments can be used to start the two parallel processes
offset from one another. When heterogeneous collections of
nodes are desired, it will be up to the scheduling system to
arrange for two separate jobs to be started concurrently.

IV. METHODOLOGY

There are several configurable parameters that affect the
performance, power, energy, and quality of the images produced
by the visualization process. In this paper, we study three
such parameters that we believe will lead to insightful results.
The rest of this section describes these parameters and the
applications used in this study.

A. Applications and Input Datasets

In this paper, we explored two different dataset—a point-
based dataset from a cosmology simulation and a grid-
based dataset from an asteroid impact simulation. These are
representative of large classes of science datasets of interest at
extreme scale. The applications and datasets are described in
detail next.

Cosmology Simulation (HACC) Hardware/Hybrid Acceler-
ated Cosmology Code (HACC) simulation is a cosmological n-
body simulation used to study the evolution of the universe [14].
For our experiments, we use four datasets from the dark sky
simulation on 400 nodes. 1 billion particles from the n-body
simulation are passed on as input to the in-situ visualization
engine for the largest data set each time step. 500 images are
rendered in each time step. Each particle’s data is composed of
its ID, position vector, and velocity vector. The visualization
task here is to render the point-cloud data in a manner that
makes visual identification of halos easy. The other problems
operate on 750 million, 500 million, and 250 million particles,
respectively.

Asteroid Simulation (xRAGE) Radiation Adaptive Grid
Eulerian (xRAGE) is a radiation-hydrodynamic code used for
solving a variety of high-deformation flow problems involving a
radiative transfer of energy (e.g., underwater blast) [13]. While
the simulation itself normally uses adaptive mesh refinement
(AMR) method, the AMR data is typically converted to
an unstructured grid data which is then downsampled to a
structured grid data before being handed off to the visualization
code. The visualization task is to represent a grid of variables
such as pressure, density and (in our case) temperature. We
run three problem sizes of this application on 216 nodes. The
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small problem operates on a 610x375x320 grid and processes
7.91 GB/timestep, medium operates on a 1280x750x640 grid
and processes 2.46 GB/timestep, and large operates on a
1840x1120x960 grid and processes 292 MB/timestep. Twelve
time steps are processed with two sliding planes and a varying
isovalue for 1000 images. For strong scaling, 100 images are
rendered for each timestep.

B. In-situ Parameters

Once the data have been read into the simulation proxy,
We study two in-situ methods, namely, sampling and coupling
strategy. The options for each parameter are described next.

Sampling Technique Spatial sampling is explored which
operates by selecting a subset of points (down sampling) from
the original dataset based on some given distribution. We vary
the sampling ratio (i.e., number of selected points from the
given “raw” data) and study how the metrics included in this
study changes.

Coupling Strategy We explore three work-distribution or
sim-viz coupling strategies.
• intercore coupling – Simulation and visualization pro-

cesses are time-shared and alternate on same set of nodes.
• internode coupling – The processes are space-shared with

the simulation process running on half the number of
allocated nodes and the visualization process running on
the remaining nodes

• tight coupling – the visualization and simulation processes
are merged to create a single, unified process for running
a scientific workflow

These coupling strategies are expected to have distinct advan-
tages based on the scalability of the rendering technique and
data size. We seek to quantify the impact of the coupling
strategy on our selected metrics.

C. Rendering Parameters

Once the data have passed through the operations requested
by the test designer, they are rendered to disk. There are two
pipelines available in ETH: (1) a geometry-based renderer,
and (2) a raycasting renderer. The geometry-based rendering
pipeline utilizes VTK to generate geometry from the data, and
then render that geometry in a variety of ways. The raycasting
method operates directly on the data rays from a light source
(e.g., camera) to all the pixels in the image plane placed in
front of the object. If the ray passing through the pixel hits
an object, the color for that pixel is calculated and rendered.
If the input object is a point cloud, the data is preprocessed
into an appropriate data structure so that it becomes possible
for the rays to hit an “object.” Note that unlike the other two
methods, this method is dependent on the number of rays cast,
once the initial data structure is built.

Rendering Methods for HACC data The HACC data
consists of a very large number of particles; essentially, points
in 3D space. Ideally, these points will be rendered as spheres,
so that distant particles will be smaller to give the appearance

of distance. This case presents a particularly difficult case for
traditional geometry-based visualization, since modeling each
of a billion or more spheres using sufficient triangles to give
the appearance of roundness is impractical. Instead, we use
two alternative geometry-based rendering — VTK points and
Gaussian splatter — for evaluation.

Geometry-based: VTK Points. This is the simplest of the
techniques used in this paper. The technique operates on a
collection of points (also referred to as a point cloud). Each
point in the collection is described by its position in the x-y-z
plane. Usually, the location of the point in the 3-D space is
also accompanied by a scalar field. The technique operates by
mapping every point in the 3-D space to the 2-D plane and
rendering every pixel with a fixed size (usually 1 to 3 pixels
on a side) and fixed color block. This normally results in a
loss in 3-D perception.

Geometry-based: Gaussian Splatter. This technique creates
a single triangle, sized to reflect a given radius, to represent
each point. At rendering time the triangle is transformed to the
proper location in eye-space, oriented toward the viewer, and
rendered to the screen using a specialized shader function that
manipulates the triangle normal at each pixel to model a sphere.
In its current implementation this leads to some unfortunate
artifacts, but it does limit the amount of geometry required to
represent the data for rendering.

Raycast Spheres. This case is particularly well-suited to
raycasting. Each particle is represented as a 3-D point and a
world-space radius, and placed into an specialized acceleration
structure at a cost of roughly O(NlogN). At run-time, the
acceleration structure is traversed to determine whether the
viewing rays (that is, rays begun at the viewpoint passing
through each pixel in the image plane) strikes a sphere with a
cost that is sub-linear in the number of particles. If a ray does
intersect a sphere, a simple geometric calculation produces an
intersection depth and orientation for shading.

Rendering Methods for Volumetric Data. The asteroid
dataset is scalar and volumetric; the data represents the
temperature field in the vicinity of the steroid strike. In our
tests we use two traditional visualization techniques that are
widely used in such cases: slicing planes and isosurfaces.

Slices and Isosurfaces in Geometry-based Visualization. To
visualize slices and isosurfaces of volumetric data, geometry-
based visualization systems must first generate geometry repre-
senting the slice or isosurface as a set of triangles, which are
then rendered using a standard OpenGL pipeline. Generating
such geometry consists of two steps: first, identifying the
cells of the data grid that contain fragments of the surface,
and then determining the geometry within those cells. While
efficient algorithms attempt to minimize the number of cells
that intersect the surfaces, a large number of the input cells
will be examined and and a very large amount of geometry
will often be created. In the case of slicing planes, the work
and resulting data size is proportional (roughly) to the 2/3 root
of the input data size, while in the case of isosurfaces the work
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is proportionate to the data size and the size out geometry set
can range from zero to proportionate to the input data size.
Slices and Isosurfaces in Raycasting. Again, raycasting pro-
vides an attractive alternative to geometry-based visualization
in these cases. The intersection of an arbitrary ray with an
implicitly defined plane to produce a hit point in data space
is O(1), and in the case of structured grids looking up the
corresponding data value is also O(1), so the cost of rendering
slicing planes is O(number of pixels). Isosurfaces are rendered
by iterating along each view ray, sampling to find the data value
for each iteration, and looking for crossings. Once a crossing is
found, a hit point can be interpolated. Note that the appropriate
sampling along the ray is proportionate to the resolution of the
data in 1-D, so the cost of each ray is proportionate to the 1/3
root of the input data size.

V. EXPERIMENTAL SETUP

In this section, we describe the hardware and software setup
used for our experiments. Further, we describe the metrics used
for evaluation.

A. Hardware Setup

We run our experiments on Hikari, a 432-node HPE Apollo
8000 cluster, which is capable of delivering over 400 TFLOPs
of peak performance. Each node of the cluster is equipped with
two 12-core Intel Haswell E5-2600v3 processors operating at
3.5 GHz and up to 64GB of RAM per node. The nodes are
interconnected by Mellanox EDR infiniband using a fat tree
topology. The cluster operates on high-voltage direct current
(HVDC) instead of the traditional alternate current thereby
avoiding four AC/DC conversions. This results in the cluster
consuming significantly lesser power at both idle and active
modes than a similar-sized cluster operating on alternate current.
The system is extensively metered to allow quantitative studies.
Apollo 8000 system manager is used to record records power
every 5 seconds on a half-rack basis. We use TACC stats [9],
a low-overhead monitoring infrastructure, to collect hardware
performance counter data, which we use for analyzing our
results.

B. Software Setup

The software setup is as follows: we use CentOS Linux
7.2.1511 running kernel version 3.10.0-327.13.1 IMPI 5.1.2 is
used to parallelize our jobs across sockets, TBB 4.4.1 is used
for threading, Intel ISPC is used for vectorization.

C. Metrics of Interest and Measurement Techniques

• Power. HPC systems are increasingly power limited.
Therefore, we wish to examine whether different visu-
alization algorithms, sampling, and data layout plays a
role in affecting the power consumption of the HPC
system. To measure power, we use the Apollo 8000 system
manager which samples instantaneous power and records
the average power every 5 seconds. From this power
profile, we calculate and report the power consumed over
the period of one entire run of an application configuration.

• Energy. With carbon emissions of IT infrastructure
becoming a major concern across the world, it becomes
important to document the energy consumed by large
jobs running on HPC system. In this paper, we calculate
energy based by multiplying the average power reported
by Apollo 8000 system manager with execution time.

• Performance. Performance is reported as execution time
which is calculated by subtracting the wall time upon the
completion of the job from the wall time at the time of
the start of the job.

• Scalability. In-situ techniques can result in additional
execution time on a supercomputing cluster (a large
resource) rather than on a scientist’s workstation (a small
resource). While the end-to-end time for a given workflow
ultimately matters, understanding how the visualization
algorithms scales on a large cluster helps us develop good
job partitioning strategies. Therefore we calculate and
report scalability which is the ratio of execution time
of a visualization algorithm running on N nodes to the
execution time on 1 node.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental data for the three
datasets previously described. The primary goal of this section
is to demonstrate the usefulness of our design-space exploration
toolkit rather than perform an in-depth characterization study.

A. Cosmology Simulation (HACC)

We present the performance, power, energy, and relative
accuracy of visualization artifacts here.

Algorithms. Table I presents the execution time and average
power consumption for the raycasting, Gaussian splat, and
VTK points for the large dataset in our test suite. As shown in
Table I, the execution time for the Gaussian splat algorithm
is 36% lower than VTK points which itself is lower than
raycasting by 42%. An analysis of performance counter data
shows that the raycasting algorithm performs significantly more
computations than the other two algorithms for the problem size
considered. Most of the additional computations come from an
additional setup phase where an acceleration structure is built
for the first time. Gaussian splat executing faster than VTK
points is an unintuitive result as they both render all the points
presented to them as input, but Gaussian incurs an additional
step where the points are splatted to nearby voxels. Thus, in
theory, this algorithm performs more computations than VTK
points. We attribute its fastness to a superior implementation of
Gaussian splat. Note that while the raycasting algorithm is the
slowest, the quality of the images rendered by this algorithm
tends to be better than the other two algorithms. Quantifying
the perceptive value of the image produced, however, is an
active research problem beyond the scope of this paper.

Finding 1. For HACC running on a mid-sized cluster (400
nodes), Gaussian splat is faster than VTK points which in turn
is faster than raycasting.

The power consumption remains relatively constant across
the three algorithms with only Gaussian splat exhibiting a
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TABLE I: Visualization Algorithm Results for HACC

Algorithm Time (s) Power (kW)

Raycasting 464.4 55.7
Gaussian Splat 171.9 55.3
VTK Points 268.7 55.2

marginally higher consumption as shown in Table I. However,
this marginal difference is insignificant and should be attributed
to noise in the measurement. Similar power consumption for
the algorithms is understandable as we expect the resources to
be utilized to the same levels. Raycasting is fully parallelized
– MPI is used to parallelize across the nodes, Intel TBB is
used to parallelize across the cores within a node, and Intel
ISPC compiler is used to vectorize across SIMD lanes; same
is the case with VTK library implementations. As long as the
problem size remains large enough to occupy all the resources,
the implementations will utilize the hardware to similar levels
and consume the same power. With power being effectively
the same across the three algorithms, the energy consumption
tracks performance (not explicitly shown in Table I).

Finding 2. Power consumption remains nearly the same for
raycasting, Gaussian splat, and VTK points for HACC.

Scalability of the algorithms with data size. We present
the normalized execution time for the three algorithms as we
change the data size and fix the number of nodes in Figure 8.
The normalization is performed against the smallest dataset
within each algorithm. Gaussian splat and VTK points show a
linear increase in execution time as the problem size increases
as they both run in O(n). Of these two algorithms, VTK points
scale better than Gaussian splat. However, for all the problem
sizes considered in this study, Gaussian splat continued to
outperform VTK points. Raycasting, unlike Gaussian splat and
VTK points, shows a sub-linear increase in execution time as
the performance of raycasting is not dependent on the number
of points, but the number of rays. While the initial structure-
generation phase of raycasting is affected by the number of
points, all the other stages depend on the number of rays cast
which remains constant. Therefore, we expect raycasting to
outperform the other two algorithms for problem sizes larger
than those considered in this paper.

Finding 3. Geometry-based methods exhibit a significantly
different scaling curve when compared to geometry-free method
which indicates that the optimal algorithm is dependent on the
problem size or cluster size.

This finding is also corroborated by Larsen et al. where
they report that raycasting outperforms rasterization for larger
problem sizes but not for smaller problems [22]. Our toolkit
makes such discoveries easier as it removes the necessity to
integrate visualization frameworks with simulation codes.

Sampling Techniques. Figure 9 presents the performance,
dynamic power, and energy consumption for four different
spatial-sampling ratios for the three different algorithms. Spatial
sampling ensures that fewer points are rendered, so the

Figure 8 Scalability of raycasting, Gaussian splat, and VTK
points with respect to problem size. Results are normalized to
the smallest problem size for each algorithm.

execution time goes down as the sampling ratio increases
as shown in Figure 9a. The result worth noting here is the
dynamic power consumption for the different sampling ratios
shown in Figure 9b. At low sampling rates (less than 0.5),
we see a significant reduction in power consumption. More
specifically, the total power consumption at a sampling rate
of 0.25 is 11% lower than the power consumption for the
full dataset (i.e., sampling ratio = 1.0). This value actually
corresponds to a 39% reduction in the dynamic power of the
system. Our hypothesis is that at this point we have reduced the
problem size to a level where it becomes difficult to keep all
parallel resources busy thus affecting the resource utilization.

Finding 4. Spatial sampling can reduce system power
consumption for HACC.

A side effect of reducing sampling ratio is a reduction in the
quality of image which may reduce its perception value. We
also quantify the error introduced by the sampling technique
using the root mean square error (RMSE) metric in Table II.
While the energy saved increases with loss in accuracy, as
expected, the trade-off curve between the two differ across
algorithms significantly. For example, VTK points show the
most resilience to error when spatial sampling is applied to a
dataset. Its RMSE is as low as 0.13 when one in four points are
sampled, whereas for the other algorithms, it is at least 0.42.
However, the baseline image (i.e., no sampling is applied) for
VTK points is generally worse than the other two. We can also
observe from the table that raycasting shows more tolerance to
errors at higher sampling rates, but the errors creep up as we
sample less. While we have used a simple metric, in practice,
we expect users of the toolkit to use more sophisticated metrics
explicitly targeted at measuring the perception quality of an
image.

Strong Scaling Results. Figure 10 shows the results for two
different node counts. For brevity, we discuss only the “full”
dataset. The other datasets within the cosmology application
follow similar trends. In this figure, we observe that the
performance of the raycasting algorithm improves only slightly
when we increase the node count as shown in Figure 10a. The
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a. Performance b. Power c. Energy

Figure 9 Performance, power, and energy consumption for four different spatial sampling configurations for the cosmology
application

TABLE II: Trade-off between accuracy and energy for HACC

Algorithm Sampling Ratio 0.75 0.50 0.25

Raycasting RMSE 0.17 0.28 0.42
Energy Saved 17.4% 28.1% 41.5%

Gaussian Splat RMSE 0.33 0.37 0.43
Energy Saved 17.2% 26.3% 47.0%

VTK Points RMSE 0.04 0.08 0.13
Energy Saved 13.3% 29.4% 51.4%

average power consumption when 200 nodes are used is nearly
50% lower than when 400 nodes are used resulting in a similar
magnitude of energy saved as shown in Figures 10b and 10c.
This is true for all three algorithms studied.

Finding 5. For the problem sizes considered, visualization
algorithms such as raycasting, Gaussian splatter, and VTK
points exhibit poor strong-scaling.

An implication of the above finding is that the commonly
used coupling strategy, where simulation and visualization
alternates on all the nodes of a supercomputer, may not be the
most energy-efficient, as the additional nodes largely “waste”
power and energy. We posit that a better way to distribute work
is be to allocate a small number of nodes for visualization and
the remaining nodes for simulation and space share the nodes
between the two.

Coupling Strategies. We verify our hypothesis by performing
an experiment with different coupling strategies. As shown
in Figure 11, tight- coupling strategy (tightly coupled and
intercore coupled) is not always optimal both in terms of
performance and energy consumption. This set of results belies
expectations and underscores the need for experiment- and
data-driven decision making. Our software toolkit along with
the experimental hardware platform makes experimentation
and data collection easier and facilitates rapid design-space
exploration.

Finding 6. Proximity between the simulation and visualiza-
tion routines does not necessarily equate with optimality as
evidenced by the intercore coupling which outperforms the
other coupling strategies for the HACC application.

B. Asteroid Simulation (xRAGE)

Experimental results are discussed for the xRAGE appli-
cation in this section. Since this application operates on
a structured grid instead of HACC’s point-based data, the
algorithms considered for evaluation differs.

Algorithms. Figure 12 shows the performance, power, and
energy consumption for VTK’s geometry-based isosurface algo-
rithm (vtk) and raycasting. As we can see from this figure, vtk
takes 28% more time than raycasting to generate the isosurface.
While VTK’s implementation consumes lesser power than
raycasting (Figure 12b), it is offset by a significant increase
in execution time resulting in higher energy consumption for
VTK as shown in Figure 12c.

Scalability of algorithms with problem size. Though both
VTK’s and raycasting’s execution time increases in O(Data
Size), the slope of the line is significantly different. As shown
in Figure 13, a 27-fold increase in problem size resulted in
VTK taking 5.8 times longer to execute, whereas for raycasting
it was only a 1.35-fold increase. In fact, VTK executed faster
for the smallest problem size, but the trend reversed when the
data size was increased by a factor of 2 in all three dimensions
of the 3D grid.

Sampling Technique. We previously identified spatial sam-
pling as a technique to reduce power consumption. Here we
run the sampling experiments with the asteroid dataset. As
observed in Figure 14b, power consumption does not reduce
with sampling ratio even when the sampling ratio is reduced
to 0.04 (compared to up to 0.25 in the cosmology application).
This indicates that optimization techniques (for both power and
performance) are not common across domains. While sampling
helped reduce power for HACC, it only helps in reducing
energy for xRAGE (shown in Figure 12c).

Strong Scaling Results. Figure 15 shows an interesting trend.
In this graph, we plot the normalized performance (proportional
to the reciprocal of execution time) versus the number of nodes
used in the experiments. We varied the node count from 1
to 216. We can see that the raycasting algorithm scales well.
When we double the number of nodes, the performance roughly
doubles, which is its expected property. VTK on the other hand,
does not only fail to scale, but actually shows performance
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a. Performance b. Power c. Energy

Figure 10 Experimental results for two different node counts for the cosmology application

a. Performance b. Power c. Energy

Figure 11 Experimental results for different simulation-visualization coupling strategies for the cosmology application

a. Performance b. Average Power c. Energy

Figure 12 Execution time and average power consumption
of raycasting and vtk algorithm for the xRAGE application

Figure 13 Scalability of raycasting and geometry-based (vtk)
methods with respect to problem size. Results are normalized
to the smallest problem size for each algorithm.

degradation beyond a point. We think this is due to some form
of contention in a shared resource arising from parallelism.

Finding 7. Similar to HACC, scaling curve for geometry-
based and geometry-free methods are different for HACC.
Therefore, the optimal method for rendering depends on
problem size and cluster size. For the largest data considered
in this paper, raycast started outperforming VTK when the
node count is 64 or more.

VII. DISCUSSION

In this section, we discuss the generality of our results.
Noting that some of our results are not broadly applicable, we
explain how a domain scientist would extend ETH to conduct
studies on other domains.

Generality of results. Our experimental study on HACC (a
representative of particle-based data) and xRage (a representa-
tive of structured grid data) revealed the following: raycasting
scales better than geometry-based methods especially at high
node counts. With exascale systems projected to consist of
hundreds of thousands of nodes, we expect raycasting to be
an important part of the domain scientists’ toolkits, especially
in the context of in-situ workflows. Nevertheless, none of
the algorithms studied in this paper exhibited good strong
scaling. This has important implications on how simulation
and visualization routines are coupled. In our studies, we
found that the optimal coupling strategy is specific to the
application, algorithm, and data size. Scientists would need
to conduct separate experimental studies for each application
domains and analyze the results to identify optimal coupling
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a. Performance b. Power c. Energy

Figure 14 Performance, power, and energy consumption for three different spatial sampling configurations for the xRAGE
application

Figure 15 Strong scaling curve for raycasting and VTK
geometric rendering for the xRAGE application.

strategies. We believe a tool built based on ETH’s architecture
would help speed up such an analysis study. Beyond coupling
strategies, other techniques such as spatial sampling consistently
helped improve performance and reduce power consumption.
We anticipate that spatial sampling techniques will help in
future scientific workflows to both improve performance and
reduce power consumption.

Given that our experimental results showed that the optimal
coupling strategy is highly specific to the application under
study, the visualization algorithm, and the dataset size and
sampling technique, one would have to extend ETH for other
domains such as unstructured grid. To conduct studies on other
domains, as a pre-processing step, one would need to run
the simulation to collect data sets and partition the data thus
collected. The job layout (i.e., where the visualization and
simulation proxies are run) is specified in a separate file. If
necessary, the visualization proxy is extended to include any
new algorithm that the user may wish to study. For subsequent
exploration of a different layout, the user simply changes the
job layout file.

VIII. CONCLUSION AND FUTURE WORK

In-situ methods are becoming an indispensable part of the
scientific workflow at extreme scale and the number of options
for these methods is exploding. With HPC systems being
severely constrained by power/energy, storage, and I/O, it has
become very important to gain a thorough understanding of the

trade-offs among many in-situ approaches. Our experience with
ETH and traditional full-featured softwares strongly indicate
the need for a light-weight mechanism to quickly explore
large parameter spaces so as to make informed choices about
setting the visualization pipelines at extreme scale. Our initial
experiments already point to important directions in designing
a visualization workflow in order to save time, power, energy,
while still obtaining good-quality visualizations. We expect
ETH to expand the type of toolkits available to a domain
scientist, by introducing a testing toolkit in addition to the
existing production-oriented visualization frameworks.
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